首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation was carried out to identify the reduction products of nitrofurazone and AF-2 (2-furyl)-3-(5-nitro-2-furyl)acrylamide by milk xanthine oxidase, rat liver xanthine oxidase, and rat liver microsomes. Data obtained from mass spectrometry and other methods indicated that the ethyl acetate-extractable major product of each nitrofuran derivative should be the corresponding amine derivative or the equivalent compound. This conclusion was further confirmed by an examination of stoichiometry. The reduced nitrofurazone was finally identified as 5-amino-2-furfural semicarbazone by comparative studies with the authentic specimen. The reduced AF-2 was tentatively identified as 2-(2-furyl)-3-(5-oxo-2-pyrrolin-2-yl)acrylamide. A reduction pathway for this conversion is postulated.  相似文献   

2.
Furazolidone (N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone) is metabolized by swine liver microsomes under aerobic and anaerobic conditions (rate: 2.55 and 3.25 nmol/mg protein/min, respectively). Covalent binding to microsomal protein amounted aerobically to 0.29 nmol/mg protein/min. Of all amino acids tested, only addition of cysteine to the incubation mixture decreased microsomal protein binding of furazolidone, indicating that covalent binding may occur at protein thiol groups. Two known metabolites of furazolidone, 3-(4-cyano-2-oxobutylidene-amino)-2-oxazolidone and 2,3 dihydro-3-cyano-methyl-2-hydroxyl-5-nitro-1 alpha,2-di(2-oxo-oxazolidin-3-yl) iminomethyl-furo[2,3-b] furan, were minor metabolites. At least 50% of total metabolites is formed by swine liver microsomes via a reductive process of furazolidone as indicated by the formation of a furazolidone-mercaptoethanol conjugate after the addition of mercaptoethanol to the incubation mixture. The conjugate was identified as 3-(4-cyano-3-beta-hydroxyethylmercapto-2-oxobutylidene amino)-2-oxazolidone, indicating that the open-chain acrylonitrile-derivative is the reactive intermediate of furazolidone which also may be responsible for interaction with protein.  相似文献   

3.
The in vivo metabolism of an antibacterial nitrofuran, furazolidone [N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone] was investigated. When the nitrofuran was administered orally to rats, two new-type nitrofuran metabolites, N-(4-carboxy-2-oxobutylideneamino)-2-oxazolidone and alpha-ketoglutaric acid, were isolated from the urine, together with 3-(4-cyano-2-oxobutylideneamino)-2-oxazolidone and N-(5-acetamido-2-furfurylidene)-3-amino-2-oxazolidone. In addition, the present study showed that the corresponding aminofuran was an intermediate in the conversion of furazolidone to these metabolites.  相似文献   

4.
After methyl 5-nitro-2-furoate was incubated with milk xanthine oxidase, three reduction products were isolated from the incubation mixture. Among them, two reduction products were new types of nitrofuran metabolites, i.e., metabolites 1 and 2 were identified as the dihydroxyhydrazine derivative (1,2-dihydroxy-1,2-di(5-methoxycarbonyl-2-furyl) hydrazine) and the hydroxylaminofuran derivative (methyl 5-hydroxylamino-2-furoate), respectively. Metabolite 3 was also identified as the aminofuran derivative (methyl 5-amino-2-furoate) by comparison with a synthetic sample.  相似文献   

5.
Enzymatic cis-trans isomerization of nitrofuran derivatives was 3-(5-Nitro-2-furyl)-2-(2-furyl)-demonstrated with milk xanthine oxidase. acrylamide (AF-2) and 3-(5-nitro-2-furyl)-2-(5-bromo-2-furyl)acrylamide (NFBFA) were mainly converted from the cis to the trans form by this enzyme supplemented with an electron donor. This enzymatic reaction was further characterized with respect to its cofactor requirements. Finally, a new cis-trans isomerization mechanism, which is based on transfer of a single electron by a nitroreductase such as xanthine oxidase to a nitrofuran derivative to give the anion free radical, was proposed.  相似文献   

6.
The superoxide scavenging activities of copper(II) complexes with the ligands, 6,6′-methylene-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L), and 6,6′-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L′), were investigated by xanthine–xanthine oxidase (X/XO) assays using nitroblue tetrazolium (NBT) as indicator molecule, and the results were compared with respect to the particular type of anion (ClO·4, Cl·, NO·3) on the apical site of the copper(II) complexes. All of the complexes inhibited the reduction of NBT by superoxide radicals, with the [Cu2(L′)](ClO4)2 complex exhibiting the highest scavenging activity against superoxide radicals among the complexes examined. The catalytic efficiency of the complexes for dismutation of superoxide radicals depends on the particular anion liganded to Cu(II) ion in the complexes, and the order of potency was observed to be ClO4 > Cl > NO·3 in phosphate buffer at pH 7.40. The Cu(II)-H4L′ complexes had the lowest IC50 and catalytic rate constant values indicating that the distorted geometry of the Cu(II)-H4L′ complexes influence their catalytic activities for dismutation of superoxide radicals more efficiently. The difference in the activities of the complexes toward superoxide radicals can also be attributed to the nature of the anions on the apical site of the copper(II) complexes and the superoxide dismutase-like activity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 53–59, 1998  相似文献   

7.
Deacylation of carcinogenic 5-nitrofuran derivatives by mammalian tissues   总被引:1,自引:0,他引:1  
The deacylations of N-[4-(5-nitro-2-furyl)-2-thiazolyl] fonnamide (FANFT), N-[4-(5-nitro-2-furyl)-2-thiazolyl] acetarnide (NFTA) and formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazide (FNT) by liver, kidney, small intestines and stomach of mouse, rat, hamster and guinea pig were investigated. FANFT was deformylated to 2-amino-4-(5-nitro-2-furyl)thiazole (ANFT). FANFT formamidase activity was higher in the liver and small intestines of mouse, hamster and guinea pig, and small intestines and stomach of rat. There was no detectable FANFT formamidase activity in the stomach of the mouse and hamster. Neither NFTA nor FNT was deacylated by the rodent tissue homogenates studied. It is suggested that (1)4 ANFT is a metabolite of FANFT but not NFTA; (2) 2-hydrazino-4-(5-nitro-2-furyl)thiazole (HNFT) may not be a metabolite of FNT; and (3) the induction of tumors by FANFT, NFTA and FNT may not be due to a common carcinogenic metabolite, although these chemicals demonstrate similar organ specificities in some of these rodents.  相似文献   

8.
The nitrofurans, 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2), N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT), nitrofurantoin, 5-nitro-2-furoic acid, 5-nitro-2-furamidoxime, 5-nitrofurfurylidene diacetate and the urine of rats fed these compounds, were assayed for mutagenic activity in Salmonella typhimurium strains TA100 and TA100FR1. All the nitrofurans were mutagenic in the order: AF-2 and FANFT > nitrofurantoin > 5-nitro-2-furamidoxime > 5-nitrofurfurylidene diacetate > 5-nitro-2-furoic acid. Strain TA100 was more sensitive than TA100FR1 to the mutagenic influence of these nitrofurans. Only the urine of rats fed AF-2, FANFT and nitrofurantoin had mutagenic activity. Again, TA100 was more sensitive than TA100FR1. The mutagenicity of the urine was not increased by treatment with β-glucuronidase. AF-2, 2-amino-4-(5-nitro-2-furyl)thiazole (deformylated product of FANFT) and nitrofurantoin were excreted in the urine of rats fed these compounds; whereas the other nitrofurans were not excreted.  相似文献   

9.
Various 1-nitroalkanes reacted with methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside to yield methyl 6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-β-d-ribofuranosides in 64–79% yield. Similarly, nitromethane and 1-nitropentane reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine-5′-aldehyde, to yield the corresponding 9-[6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-α-l-talo(β-d-allo)furanosyl]-N6-benzoyladenines in 74 and 44% yield, respectively. The potential utility of this nitroalkane addition for the synthesis of nucleosides having a C-5′C-6′ bond is discussed.  相似文献   

10.
Xanthine/xanthine oxidase and H2O2 stimulated sugar transport. Application of superoxide dismutase and catalase to the cells showed an inhibitory effect on these agent-stimulated sugar transports. Addition of amiloride and 4-acetamide-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), which abolish the cytoplasmic alkalinization, inhibited the stimulation of sugar transport by xanthine/xanthine oxidase in the presence of catalase. The calmodulin antagonists, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and trifluoperazine inhibited H2O2-stimulated sugar transport. These results suggest that O2 stimulates sugar transport in an intracellular pH-dependent manner and that H2O2 stimulates sugar transport in a calcium-calmodulin-dependent manner. These mechanisms may be involved in sugar-transport stimulation in mouse fibroblast BALB/3T3 cells by the tumor-promoting phorbol ester phorbol-12,13-dibutyrate and insulin, since the stimulatory effects of these agents were inhibited by scavengers of oxygen radicals.  相似文献   

11.
Dextran-linked 7-deazaguanine as well as 7-deazahypoxanthine and allopurinol derivatives have been prepared by carbodiimide condensation of the 2-carboxyethyl intermediates 2c and 1c,d with N-(6-aminohexylcarbamoyl-methylated dextran T80. The dextran-linked nucleobases are degradable by endo-dextranase (EC 3.2.1.11) which was demonstrated by time-dependent viscosity measurements. Monomeric as well as polymer-linked purine analogues were tested as inhibitors of xanthine oxidase from cow's milk (EC 1.2.3.1). While the allopurinol- and 7-deazahypoxanthine derivatives (1c,d) do no longer bind to the enzyme the 7-deazaguanine derivates 2c,d are strong competitive inhibitors of xanthine oxidase even in the polymer-linked state.  相似文献   

12.
A series of bisnaphthalimide derivatives were synthesized and evaluated for growth-inhibitory property against HT-29 human colon carcinoma. The N,N′-bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]propane-2-ethanediamine (9) and the N,N′-Bis[2-(5-nitro-1,3-dioxo-2,3-dihydro-1H-benz[de]-isoquinolin-2-yl)]butylaminoethyl]-2-propanediamine (12) derivatives emerged as the most potent compounds of this series. Molecular modelling studies indicated that the high potency of 12, the most cytotoxic compound of the whole series, could be due to larger number of intermolecular interactions and to the best position of the naphthalimido rings, which favours π–π stacking interactions with purine and pyrimidine bases in the DNA active site. Moreover, 12 was designed as a DNA topoisomerase II poison and biochemical studies showed its effect on human DNA topoisomerase II. We then selected the compounds with a significant cytotoxicity for apoptosis assay. Derivative 9 was able to induce significantly apoptosis (40%) at 0.1 μM concentration, and we demonstrated that the effect on apoptosis in HT-29 cells is mediated by caspases activation.  相似文献   

13.
In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (4alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (4beta), 5-amino-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (5alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (5beta), 5-nitro-1-(2,3-dideoxy-beta-D-ribofuranosyl)uracil (6beta), 5-amino-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-beta-D-ribofuranosyl)cytosine (9beta). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

14.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

15.
The sulfonated tetrazolium 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide (XTT) is advantageous in that it yields a water-soluble formazan, unlike most other available tetrazoliums. XTT is reducible by superoxide, as are other tetrazoliums, but is not directly reduced by xanthine oxidase plus xanthine or by glucose oxidase plus glucose. This led to the suggestion that XTT reduction might serve as a reliable index of intracellular O(2)(-) production. We now show that soluble extracts of Escherichia coli contain two NADPH:XTT reductases that act aerobically or anaerobically. That being the case, XTT reduction is not a reliable measure of intracellular O(2)(-).  相似文献   

16.
Biotransformation of the highly substituted pyridine derivative 2-amino-4-methyl-3-nitropyridine by Cunninghamella elegans ATCC 26269 yielded three products each with a molecular weight of 169?Da which were identified as 2-amino-5-hydroxy-4-methyl-3-nitropyridine, 2-amino-4-hydroxymethyl-3-nitropyridine, and 2-amino-4-methyl-3-nitropyridine-1-oxide. Biotransformation by Streptomyces antibioticus ATCC 14890 gave two different products each with a molecular weight of 169?Da; one was acid labile and converted to the other stable product under acidic conditions. The structure of the stable product was established as 2-amino-4-methyl-3-nitro-6(1H)-pyridinone, and that of the less stable product was assigned as its tautomer 2-amino-6-hydroxy-4-methyl-3-nitropyridine. Four of the five biotransformation products are new compounds. Several strains of Aspergillus also converted the same substrate to the lactam 2-amino-4-methyl-3-nitro-6(1H)-pyridinone. Microbial hydroxylation by C. elegans was found to be inhibited by sulfate ion. In order to improve the yield and productivity of the 5-hydroxylation reaction by C. elegans, critical process parameters were determined and Design of Experiments (DOE) analyses were performed. Biotransformation by C. elegans was scaled up to 15-l fermentors providing 2-amino-5-hydroxy-4-methyl-3-nitropyridine at ca. 13?% yield in multi-gram levels. A simple isolation process not requiring chromatography was developed to provide purified 2-amino-5-hydroxy-4-methyl-3-nitropyridine of excellent quality.  相似文献   

17.
In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O2) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O2 radicals. In the soluble fractions of peroxisomes, no generation of O2 radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O2 generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.  相似文献   

18.
Xanthine oxidase has been recognized as an important source of oxygen free radicals in ischemia-reperfusion injury. In order to study this enzyme in biological tissues, the conversion of pterin (2-amino-4-hydroxypteridine) to isoxanthopterin provides the basis for a very sensitive fluorometric assay. Xanthine oxidase is typically assayed in the presence of pterin only, while an electron acceptor which replaces NAD+ is used to determine the combined xanthine dehydrogenase plus xanthine oxidase activity. 2,6-Dichlorophenol-indophenol has been used as an electron acceptor in this assay. However, it was found in this study that it acts as an effective competitive inhibitor for xanthine oxidase. We concluded that methylene blue is the electron acceptor of choice in the fluorometric assays for xanthine oxidase.  相似文献   

19.
Summary The effect of oxygen free radicals, generated by xanthine and xanthine oxidase, was studied on the release of lysosomal hydrolase from rat liver lysosomes in vitro. A lysosomal enriched subcellular fraction was prepared, using differential centrifugation technique, from the homogenate of rat liver. The biochemical purity of the lysosomal fraction was established by using the markers of different cellular organelles. Oxygen free radicals were generated in vitro by the addition of xanthine and xanthine oxidase. The release of lysosomal hydrolase (-glucuronidase) from the lysosomal fraction was measured. There was a 3 to 4 fold increase in the release of -glucuronidase activity in the presence of xanthine and xanthine oxidase when compared to that in the absence of xanthine and xanthine oxidase. In the presence of superoxide dismutase (SOD), a scavenger of oxygen free radicals, the xanthine and xanthine oxidase system was unable to induce the release of -glucuronidase activity from the lysosomes. Sonication (2 bursts for 15 sec each) and Lubrol (2 mg/10 mg lysosomal protein) treatment, which are known to cause membrane disruption, also induced the release of -glucuronidase from lysosomal fraction. This release of -glucuronidase by sonication and lubrol treatment was not prevented by SOD. These data indicate that lysosomal disruption is a consequence of oxygen free radicals, generated by xanthine and xanthine oxidase.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EGTA Ethylene Glycol Bis-(-aminoethyl ether)N,N,-N,N-tetracetic acid - Tris Tris (hydroxymethyl) aminomethane - SOD Superoxide Dismutase  相似文献   

20.
《Carbohydrate research》1987,166(2):253-262
Methyl l-sibirosaminide and N-acylkansosamine were synthesized via the same intermediate, methyl 4-amino-4,6-dideoxy-2,3-O-isopropylidene-3-C-methyl-α-l-mannopyranoside (7), from l-rhamnose in 7 and 10 steps, respectively. Conversion of 7 into the title compounds was performed by N-methylation or N-(2-methoxypropanoyl)ation followed by appropriate derivatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号