首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
Adult erythrocytes of X. laevis contain six electrophoretically resolvable globin polypeptides while tadpole erythrocytes contain four polypeptides, none of which comigrates with an adult protein. We show that three of the adult proteins are alpha globin polypeptides (alpha 1, alpha 2, alpha 3) and three are beta globin polypeptides (beta 1, beta 2, beta 3). We find that a tadpole alpha globin gene (alpha T1) is linked to the major adult locus in the sequence 5'-alpha T1-alpha 1-beta 1-3' with 5.2 kb separating alpha T1 from alpha 1. Another tadpole alpha globin gene (alpha T2) is linked to the minor adult locus in the sequence 5'-alpha T2-alpha 2-beta 2-3' with 10.7 kb separating alpha T2 from alpha 2. These linkage relationships are consistent with the major and minor loci having arisen by tetraploidization but the different separation of larval and adult globin genes at the two loci indicates the occurrence of some additional chromosomal rearrangement. Two alternative models are presented.  相似文献   

4.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   

5.
Expression of the human alpha and beta globin gene clusters is regulated by remote sequences, referred to as HS -40 and the beta-locus control region (beta-LCR) that lie 5-40 kb upstream of the genes they activate. Because of their common ancestry, similar organization and coordinate expression it has often been assumed that regulation of the globin gene clusters by HS -40 and the beta-LCR occurs via similar mechanisms. Using interspecific hybrids containing chromosomes with naturally occurring deletions of HS -40 we have shown that, in contrast to the beta-LCR, this element exerts no discernible effect on long-range chromatin structure and in addition does not influence formation of DNase I hypersensitive sites at the alpha globin promoters. These differences in the behaviour of HS -40 and the beta-LCR may reflect their contrasting influence on gene expression in transgenic mice and may result from the differing requirements of these elements in their radically different, natural chromosomal environments; the alpha cluster lying within a region of constitutively 'open' chromatin and the beta cluster in a segment of chromatin which opens in a tissue-specific manner. Differences in the hierarchical control of the alpha and beta globin clusters may exemplify more general differences in the regulation of eukaryotic genes which lie in similar open or closed chromosomal regions.  相似文献   

6.
The equine alpha globin gene complex comprises two functional alpha genes and an alpha-like pseudogene arranged in the order 5'-alpha 2-(5kb)-alpha 1-(3kb)-psi alpha-3'. A single (embryonic) zeta-like sequence lies within a 12 kb region 5' to the alpha 2 gene. We have determined the sequence of the alpha 1 gene of the BII haplotype, one of two most common haplotypes (the other being BI) which encode alpha globins with either Tyr (BI) or Phe (BII) at codon 24 in both linked alpha genes. In BI and BII the non-allelic alpha 2 and alpha 1 genes respectively code for Gln or Lys at codon 60, thus accounting for the 4 alpha globin types seen in BI/BII heterozygotes. Genomic restriction enzyme maps of the BII alpha complex (24Phe/60Lys,Gln) and the allelic BI (24Tyr/60Lys,Gln) are identical to each other, and to those of a rarer normal haplotype, A, which encodes only alpha 24Tyr/60Gln globin, and a low expression mutant of BII which encodes only 24Phe/60Lys globin. These two latter haplotypes must therefore have a linked pair of alpha genes, as in BI and BII, but with identical coding properties, and it is suggested that this has arisen by gene conversion.  相似文献   

7.
8.
Multiple arrangements of the human embryonic zeta globin genes.   总被引:14,自引:1,他引:13       下载免费PDF全文
Rearrangements which are most readily explained by homologous crossover between misaligned segments of DNA in the region of the human embryonic zeta (zeta) globin genes have been identified in individuals of three different racial origins. These recombination events have resulted in a surprisingly high prevalence of chromosomes with single (0.4%) and triplicated (1.3%) zeta genes with apparently no significant effect on the phenotype.  相似文献   

9.
10.
11.
Gene mapping by fluorescent in situ hybridization   总被引:6,自引:0,他引:6  
We describe a new method for the mapping of mammalian genes, utilizing in situ hybridization of mRNA to DNA of chromosomes. It involves the hydrogen bonding of the polyadenylic acid at the 3' end of hybridized mRNA to the polyuridylic acid tail of a highly fluorescent latex microsphere. The resultant double hybrid can be visualized by fluorescence microscopy. The chromosomal localization of human alpha + beta globin genes has been explored by this method. Our data point ot the long arms of chromosomes 4 and 5 as the loci for the human globin genes.  相似文献   

12.
13.
14.
We have explored the evolution of the alpha-globin gene family by comparative sequence and phylogenetic analyses of mammalian alpha-globin genes. Our analyses reveal the existence of a new alpha-globin gene lineage in mammals that is related to the alpha(D)-globin genes of birds, squamates and turtles. The gene is located in the middle of the alpha-globin gene cluster of a marsupial, Sminthopsis macroura and of humans. It exists in a wide variety of additional mammals, including pigs, cows, cats, and dogs, but is a pseudogene in American marsupials. Evolutionary analyses suggest that the gene has generally evolved under purifying selection, indicative of a functional gene. The presence of mRNA products in humans, pigs, and cows also suggest that the gene is expressed and likely to be functional. The analyses support the hypothesis that the alpha(D)-globin gene lineage has an ancient evolutionary origin that predates the divergence of amniotes. The structural similarity of alpha-globin gene clusters of marsupials and humans suggest that an eight gene cluster (5'-zeta2-zeta1-alpha(D)-alpha3-alpha2-alpha1-theta-omega-3'), including seven alpha-like genes and one beta-like globin gene (omega-globin) existed in the common ancestor of all marsupial and eutherian mammals. This basic structure has remained relatively stable in marsupials and in the lineage leading to humans, although omega-globin has been lost from the alpha-globin gene cluster of humans.  相似文献   

15.
In previous studies we identified and sequenced clones containing two adult alpha globin genes of the goat. Additional studies have revealed the presence of an embryonic alpha globin gene termed zeta. Sequence analysis of the gene shows that it is the largest mammalian or avian globin gene cloned to date. Its unusual size is mainly due to a 14 base-pair tandem repeat sequence in its first intron. A similar sequence is also found in the first intron of the human zeta gene. The goat zeta coding sequence differs greatly from that of the adult alpha, particularly at amino acid position 38, where it codes for the amino acid replacement of Gln for Thr. This change may confer a higher intrinsic O2 affinity on the zeta globin protein, ensuring a sufficient O2 supply for the developing goat embryo. The cloning and sequencing of this gene completes the alpha globin locus of the goat, composed of three genes in the following order 5'-zeta-I alpha-II alpha-3'. Evolutionary comparisons of the goat alpha locus with other amphibian, avian and mammalian loci reveal several interesting features. Statistical analysis confirms the hypothesis that the embryonic alpha gene is much older (400 million years) than the embryonic beta gene (200 million years), and that it is descended from a primordial gene, whose present-day counterpart is the Xenopus larval alpha globin gene. Our results also suggest that after the divergence of the avian line, the alpha A gene converted the alpha D gene during the evolution of the pre-mammalian line. The alpha D globin gene remains unconverted in the avian line, potentially because of insertion/deletion sequences that may prevent any gene conversion event. The divergence rates of specific globin genes have been analyzed and found to form an essentially straight line, in agreement with the neutralist view of evolution.  相似文献   

16.
We have determined the sequence of 2400 base pairs upstream from the human pseudo alpha globin (psi alpha) gene, and for comparison, 1100 base pairs of DNA within and upstream from the chimpanzee psi alpha gene. The region upstream from the promoter of the psi alpha gene shows no significant homology to the intergenic regions of the adult alpha 2 and alpha 1 globin genes. The chimpanzee gene has a coding defect in common with the human psi alpha gene, showing that the product of this gene, if any, was inactivated before the divergence of human and chimpanzee. However the chimpanzee gene contains a normal ATG initiation codon in contrast to the human gene which has GTG as the initiation codon. The psi alpha genes of both human and chimpanzee are flanked by the same Alu family member. The structure and position of this repeat have not been altered since the divergence of human and chimpanzee, and it is at least as well conserved as its immediate flanking sequence. Comparing human and chimpanzee, the 300 bp Alu repeat has accumulated only two base substitutions and one length mutation; the adjacent 300 bp flanking region has accumulated five base substitutions and twelve length mutations.  相似文献   

17.
We describe two novel arrangements of the human fetal globin gene region: one chromosome with two linked A gamma genes (A gamma-A gamma) and two chromosomes with two linked G gamma genes (G gamma-G gamma). The gamma genes of these three chromosomes were cloned and the unusual 5' A gamma gene and one of the unusual 3' G gamma genes were partially sequenced. Both of these unusual genes differ from the genes normally found at their respective locations by a nucleotide substitution at the site of the single coding region difference between normal G gamma and A gamma genes. In both cases, the substitution is identical to the nucleotide found at that position in the normal neighboring gene. The unusual 3' G gamma gene also differs from normal A gamma genes at two other nucleotide positions, but both differences appear to be "private" or exclusive to this particular gene. These unusual fetal globin gene arrangements could have arisen from point mutations or from gene conversions of limited extent, the boundaries of which have been determined for all three chromosomes.  相似文献   

18.
Five hundred two alpha-globin gene haplotypes were established in three Polynesian populations, Samoans, Maoris, and Niueans. Limited diversity of haplotypes was found in Polynesians, in whom six common haplotypes (Ia, IIa, IId, IIe, IIIa, and IVa) predominate. Haplotypes Ia and IIa enable Polynesians to be distinguished from Melanesians. Differences in haplotype profiles between the above Polynesian populations support their separate clustering on the basis of previous globin gene analyses and proposed theories of migration. The -alpha/, alpha alpha alpha/, -zeta/, and zeta zeta zeta/rearrangements are each associated exclusively with a particular haplotype, providing evidence of a single evolutionary origin for each. Therefore, a minimum of four DNA crossover events account for the separate origins of these rearrangements in the Polynesians.  相似文献   

19.
We found an enhancer element placed at the 3' side of the adult duck alpha A globin gene. The duck alpha globin gene cluster contains three genes from the 5' to 3' side: the pi embryonic gene, the alpha D minor adult gene and the alpha A adult major gene. We analyzed a 16 kb genomic domain extending from 2 kb upstream of the pi gene to 5 kb downstream of the alpha A gene. This enhancer is active in AEV transformed chicken erythroblasts. Its is inactive both in HeLa cells and in the human erythroid cells K562 which express only embryonic genes. These findings are discussed in relation to previous results concerning the duck beta globin enhancer located at the 3' side of the beta A globin gene.  相似文献   

20.
In order to understand the coordinate regulation between the alpha-like and beta-like globins during the developmental switches in hemoglobin synthesis, we have studied the rabbit alpha-like globin gene family. A cluster of six linked genes arranged 5'-zeta 1-alpha 1-theta 1-zeta 2-zeta 3-theta 2-3' has been isolated as a set of overlapping clones from a library of rabbit genomic DNA. Blot-hybridization analysis of genomic DNA not only confirms this linkage arrangement but also reveals the presence of additional zeta and theta genes. We propose that this gene cluster was generated by a block duplication of a set of alpha-like genes; the proposed duplication unit is zeta-zeta-alpha-theta. Further duplications of a zeta-zeta-theta set are also proposed to have occurred. As expected for a duplicated locus, the rabbit alpha-like gene cluster contains long blocks of internal homology. The Z homology block is about 7.2 kilobase pairs long and contains the zeta genes; the T homology block is about 4.7 kilobase pairs long and contains a theta gene. Surprisingly, both Z and T homology blocks are flanked by a common junction sequence (J) which contains a region very similar to the 3'-untranslated sequence of an alpha-globin gene. Analysis of the J sequences suggests a recombination mechanism by which the alpha gene could have been deleted from the second set of genes in the cluster (zeta 2-zeta 3-theta 2). The relationships among the genes in characterized alpha-like gene clusters in mammals are summarized. The rabbit gene cluster differs from those of other mammals principally in the loss of a gene orthologous to the human psi alpha 1 and in the block duplication of the zeta-zeta-alpha-theta gene set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号