首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The development of the thymidine phosphorylating systems was studied in various regions of brain. Brain slices from cerebellum, brain stem, and forebrain of rabbits 2, 7, 14, 30, 90, 500, and 2500 days of age were incubated for various times in artificial CSF containing 3 nM-[3H]thymidine at 37°C under 95% O2-5% CO2. When slices from all brain regions of 2-day-old rabbits were incubated in [3H]thymidine for 30 min, tissue-to-medium ratios of 3H were between 2 and 4 and declined with age, and the percentages of the total 3H in perchloric acid homogenates of brain slices as [3H]DNA were 26–29%, declining to low levels with age. However, at all ages and in all regions studied, 41 -88% of the 3H within the slices was phosphorylated. After homogenization and subcellular fractionation of the brain slices incubated in [3H]thymidine for 30 min, the highest percentage of [3H]thymidine phosphates plus [3H]DNA was present in the nuclear (crude and purified) and mitochondrial fractions of all brain regions. The [3H]DNA content in the nuclear and mitochondrial fractions declined with age, but the percentage of [3H]thymidine phosphates did not. Thymidine phosphates were synthesized from thymidine in all brain regions tested throughout the entire life span.  相似文献   

2.
Metabolism of Deoxyuridine in Rabbit Brain   总被引:3,自引:2,他引:1  
Abstract: The metabolism of [3H]deoxyuridine by rabbit brain was investigated in vitro and in vivo . In vitro , brain slices from various regions of brain and from all age groups accumulated [3H]deoxyuridine from artificial CSF. Within the slices, a portion of the accumulated [3H]deoxyuridine was metabolized to [3H]deoxyuridine phosphate, with subsequent conversion to [3H]thymidine phosphate, and ultimately [3H]DNA. The percentage of the [3H]deoxyuridine phosphorylated and subsequently converted into [3H]DNA was highest at birth and declined to adult levels in 3-month-old rabbits. Thymidine, when added to the incubation medium with the [3H]deoxyuridine, was approximately 10 times as potent as unlabeled deoxyuridine in inhibiting the intracellular phosphorylation and conversion of [3H]deoxyuridine to [3H]thymidine phosphate in brain slices. In vivo , 2.5 h after intraventricular injection of [3H]deoxyuridine, over 90% of the [3H]deoxyuridine was cleared from the central nervous system at all ages. However, in both newborn and 3-month-old rabbits, approximately 40 and 12%, respectively, of the 3H remaining in brain was phosphorylated and converted to [3H]thymidine phosphates; and 11 and 4%, respectively, of the 3H remaining in brain was converted to [3H]DNA. These results show that both immature and mature rabbit brain is able to incorporate deoxyuridine into DNA. Thus, all the enzymes involved in this conversion, including thymidylate synthetase (EC 2.1.1.45), are present and active in brain throughout life.  相似文献   

3.
Abstract: The localization and mechanism of thymidine and deoxyuridine transport in the central nervous system were studied in vivo and in vitro . Previous studies have shown that thymidine enters brain from blood in part via the CSF. In vitro , isolated adult bovine cerebral microvessels, which readily concentrated and phosphorylated deoxyglucose, were unable to concentrate thymidine and deoxyuridine. In vivo , [3H]thymidine (0.2 μ M ) and [3H]deoxyuridine(0.4 μ M ) were not extracted more readily than [14C]sucrose in a single pass through the cerebral circulation of rats. In vivo , [3H]thyrnidine retention in CSF and brain after entry from blood was increased when the efflux of [3H]thymidine from CSF and the phosphorylation of [3H]thymidine in brain were depressed by the intraventricular injection of unlabeled thymidine. These studies and previous work suggest that the transfer of thymidine (and deoxyuridine) through the blood-brain barrier in either direction must be extremely low. The present studies are consistent with the postulate that thymidine is transported by an active transport system in the choroid plexus that transfers thymidine from blood into the CSF; from the CSF, the thymidine enters brain cells and is phosphorylated.  相似文献   

4.
Abstract: The binding of [3H]flunitrazepam, [3H]RO 5-4864, and [3H]PK 11195 to membrane preparations of the retina was studied in the turtle and rabbit. Only a single population of [3H]flunitrazepam binding sites was detected in the turtle, whereas two populations appeared to be present in the rabbit. No specific binding for [3H]RO 5-4864 and [3H]PK 11195 could be detected in the turtle. In rabbit, both ligands bound with high affinity, revealing a significant population of binding sites (KD values of 24 ± 2.3 and 2.2 ± 0.8 nM, and Bmax values of 440 ± 35 and 1,482 ± 110 fmol/mg of protein, respectively). The binding was temperature - and protein-dependent. Displacement studies showed a similar rank order of potency of various unlabeled ligands against both [3H]RO 5-4864 and [3H]PK 11195 (PK 11195 > Ro 5-4864 > flunitrazepam > flumazenil). These results suggest that peripheral-type benzodiazepine receptors are present in the retina of the rabbit, but not of the turtle.  相似文献   

5.
Abstract: The effect of platelet-activating factor (PAF) on neurotransmitter release from rat brain slices prelabeled with [3H]acetylcholine ([3H]ACh), [3H]norepinephrine ([3H]NE), or [3H]serotonin ([3H]5-HT) was studied. PAF inhibited K+ depolarization-induced [3H]ACh release in slices of brain cortex and hippocampus by up to 59% at 10 n M but did not inhibit [3H]ACh release in striatal slices. PAF did not affect 5-HT or NE release from cortical brain slices. The inhibition of K+-evoked [3H]ACh release induced by PAF was prevented by pretreating tissues with several structurally different PAF receptor antagonists. The effect of PAF was reversible and was not affected by pretreating brain slices with tetrodotoxin. PAF-induced inhibition of [3H]ACh release was blocked 90 ± 3 and 86 ± 2% by pertussis toxin and by anti-Gαi1/2 antiserum incorporated into cortical synaptosomes, respectively. The results suggest that PAF inhibits depolarization-induced ACh release in brain slices via a Gαi1/2 protein-mediated action and that PAF may serve as a neuromodulator of brain cholinergic system.  相似文献   

6.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VIVO STUDIES   总被引:8,自引:8,他引:0  
Abstract— The total concentrations of vitamin B6 (B6) in plasma, choroid plexus, CSF and brain of adult New Zealand white rabbits, measured fluorometrically, were 0.30, 15.10, 0.39 and 8.90 μ mol/l or kg respectively. The mechanisms by which B6 enters and leaves brain, choroid plexus and CSF were investigated by injecting [3H]pyridoxine (PIN) intravenously, intraventricularly and intraarterially. [3H]PIN, with or without unlabelled PIN, was infused intravenously at a constant rate into conscious rabbits. At 150 min, [3H]B6 readily entered CSF, choroid plexus and brain. The addition of 0.5 mmol/kg carrier PIN to the infusion solution depressed the relative entry of [3H]B6 into CSF, choroid plexus and brain by about 80%. After intraventricular injection, [3H]PIN readily entered brain from CSF. The intraventricular injection of carrier PIN with [3H]PIN decreased the amount of [3H]B6 in brain and also decreased the percentage of [3H]B6 in CSF and brain that was phosphorylated. During one pass through the cerebral circulation, [3H]PIN (1 μ m ) was cleared from the circulation no more rapidly than mannitol. These results were interpreted as showing that the entry of B6 from blood into CSF and presumably the extracellular space of brain and thence into brain cells involves one or more saturable transport and/or metabolic steps.  相似文献   

7.
Abstract: Binding of [3H]LY278584, which has been previously shown to label 5-hydroxytryptamine3 (5-HT3) receptors in rat cortex, was studied in human brain. Saturation experiments revealed a homogeneous population of saturable binding sites in amygdala ( K D= 3.08 ± 0.67 n M, B max= 11.86 ± 1.87 fmol/mg of protein) as well as in hippocampus, caudate, and putamen. Specific binding was also high in nucleus accumbens and entorhinal cortex. Specific binding was negligible in neocortical areas. Kinetic studies conducted in human hippocampus revealed a K on of 0.025 ± 0.009 n M −1 min−1 and a K off of 0.010 ± 0.002 min−1. The kinetics of [3H]LY278584 binding were similar in the caudate. Pharmacological characterization of [3H]LY278584 specific binding in caudate and amygdala indicated the compound was binding to 5-HT3 receptors. We conclude that 5-HT3 receptors labeled by [3H]LY278584 are present in both limbic and striatal areas in human brain, suggesting that 5-HT3 receptor antagonists may be able to influence the dopamine system in humans, similarly to their effects in rodent studies.  相似文献   

8.
The effects of changes in the concentrations of pyridoxal phosphate and blogenic amines in brain on: (I) pyridoxal kinase (EC 2.7.1.35) activity in brain and choroid plexus; and (2) vitamin B6 accumulation by brain slices and isolated, intact choroid plexuses were studied. New Zealand white rabbits were treated parenterally with 200 mg/kg pyridoxine-HCl for 3 days or 120 mg/kg 4-deoxypyridoxine HCI or 5 mg/kg reserpine I day before death. After these treatments the mean concentration of pyridoxal phosphate in brain was elevated by 39% by pyridoxine and decreased by 57% by 4-deoxypyridoxine. Reserpine had no effect. However, the ability of brain slices and isolated, intact choroid plexuses from the treated rabbits to accumulate [3H] vitamin B6 (with [3H]pyridoxine in the medium) was not different from untreated controls. Also, the specific activity of pyridoxal kinase in brain and choroid plexus of treated rabbits was not different from controls. These results show that vitamin B6 accumulation and pyridoxal kinase activity in brain and choroid plexus are independent of both pyridoxal phosphate and reserpine-sensitive biogenic amine concentrations in brain. In vitro studies with pyridoxal kinase showed that. in both choroid plexus and brain. pyridoxal kinase was a single enzyme with a molecular weight of 43.000 and a Km , for pyridoxine of 2.0 μM Crude and partially-purified pyridoxal kinase from brain was not inhibited by biogenic amines (1 mM) or pyridoxal phosphate (5 μM). These in vitro data are consistent with the lack of effect of changes in pyridoxal phosphate and biogenic amine concentrations (in brain) on pyridoxal kinase activity in brain in vivo.  相似文献   

9.
SUMMARY 1. The influences of temperature and dissolved nitrates and phosphates on microbial activity associated with suspended fine particulate organic matter (seston) were evaluated in four headwater streams in the southern Appalachian Mountains.
2. Temperature manipulations of ± 5°C always induced significant changes in [14C] glucose mineralization (ANOVA; P <0.05) and [3H]thymidine incorporation (ANOVA; P <0.05).
3. Nutrient amendments of 1.0 mg NO3 I−1 and 0.05 mg PO4I−1 induced no significant alterations in bacterial mineralization of [14C]glucose (ANOVA; P >0.05) or incorporation of [3H]thymidine (ANOVA; P >0.05) in short-term (i.e. 3 h) experiments.
4. Microorganisms attached to refractory particulate organic matter do not appear to be limited by nitrogen or phosphorus even in streams with ambient nutrient concentrations as low as 0.06 mg NO3 I−1 and <0.03 mg PO4 I−1.
5. Our results indicate that variations in water temperature resulting from diurnal and seasonal temperature fluctuations, forest clear-cutting, and catchment elevation and aspect can have marked effects upon microbial activity and production, while short-term alterations in nutrient regime appear to have no significant effect on microbial activity associated with seston.  相似文献   

10.
Potential desensitization of brain nicotinic receptors was studied using a [3H]dopamine release assay. Nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes was concentration-dependent with an EC50 of 0.33 ± 0.13 μ M and a Hill coefficient of 1.44 ± 0.18. Desensitization by activating concentrations of nicotine had a similar EC50 and a half-time of 35 s. Concentrations of nicotine that evoked little release also induced a concentration-dependent desensitization (EC50=6.9 plusmn; 3.6 n M , t1/2= 1.6-2.0 min, n H=1.02 ± 0.01). Both types of desensitization produced a maximum 75% decrease in [3H]dopamine release. Recovery from desensitization after exposure to low or activating concentrations of nicotine was time-dependent with half-times of 6.1 min and 12.4 min, respectively. Constants determined for binding of [3H]nicotine to striatal membrane at 22°C included a K Dof 3.7 ± 0.5 n M , Bmax of 67.5 ± 2.2 fmol/mg, and Hill coefficient of 1.07 ± 0.06. Association of nicotine with membrane binding sites was biphasic with half-times of 9 s and 1.8 min. The fast rate process contributed 37% of the total reaction. Dissociation was a uniphasic process with a half-time of 1.6 min. Comparison of constants determined by the release and binding assays indicated that the [3H]-nicotine binding site could be the presynaptic receptor involved in [3H]dopamine release in mouse striatal synaptosomes.  相似文献   

11.
Abstract: Displacement of [3H]glutamate by 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid and quisqualate (in the presence of saturating concentrations of ionotropic glutamate receptor agonists) was used to characterize optimal ionic conditions, distribution, and the ontogeny of glutamate receptor binding sites in rat brain. Using rat forebrain membranes or receptor autoradiography, optimal 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive [3H]glutamate binding was found in the presence of 100 m M bromide ions and in the absence of calcium ions. Under these conditions, [3H]glutamate binding was relatively quisqualate insensitive. In regions of the neonatal (11-day-old) and adult rat brain, this [3H]glutamate binding was highest in forebrain (striatum, cerebral cortex, and hippocampus) and hypothalamus/midbrain but was lower in the cerebellum, olfactory bulb, and pons/medulla regions. 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive and quisqualate-insensitive [3H]glutamate binding was present in the rat forebrain at 1 day of age and gradually increased more than twofold by day 50 (adult). Thus, in the presence of bromide ions and in the absence of calcium ions, [3H]glutamate labels a subpopulation of metabotropic glutamate receptors that are sensitive to 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid but insensitive to quisqualate. Expression of [3H]glutamate binding under these conditions was both regionally and developmentally regulated in rat brain, suggesting that [3H]glutamate is labeling a distinct population of metabotropic glutamate receptors.  相似文献   

12.
Abstract: High-affinity choline transport (HAChT), the rate-limiting and regulatory step in acetylcholine (ACh) synthesis, is selectively localized to cholinergic neurons. Hemicholinium-3 (HC3), a potent and selective inhibitor of HAChT, has been used as a specific radioligand to quantify HAChT sites in membrane binding and autoradiographic studies. Because both HAChT velocity and [3H]HC3 binding change as in vivo activity of cholinergic neurons is altered, these markers are also useful measures of cholinergic neuronal activity. Evidence that [3H]HC3 is a specific ligand for HAChT sites on cholinergic terminals is reviewed. The ion requirements of HAChT and [3H]HC3 binding indicate that sodium and chloride are required for recognition of both choline and [3H]HC3. A common recognition site is also indicated by the close correspondence of the potency of HC3 and choline analogues for inhibiting both HAChT and [3H]HC3 binding. The parallel regional distributions of both markers in adult brain, during development and after specific lesions, all indicate specific cholinergic localization. The close association of HAChT and [3H]HC3 binding sites is also supported by parallel regulatory changes occurring after in vivo drug treatments and in vitro depolarization. Overall, the data indicate a close association between HAChT and [3H]HC3 binding and are consistent with the sites being identical. Methodologic considerations in using [3H]HC3 as a ligand and considerations in interpretation of results are also discussed.  相似文献   

13.
Abstract: [35S]r-Butylbicyclophosphorothionate (TBPT), a cage convulsant with picrotoxinin-like activity, binds to rat brain membranes to a single site with an apparent KD of 25.1 ± 5.6 n M and a Bmax of 1.40 ± 0.22 pmol/mg protein. TBPT binding to rat brain membranes was inhibited by a variety of convulsant, depressant, anxiolytic, and anticonvulsant drugs that had previously been shown to inhibit [3H]a-dihydropicrotoxinin binding. Depressant drugs such as pentobarbital and the nonbarbiturate (+)etomidate inhibited TBPT binding in an uncompetitive manner. Thus, pentobarbital and (+)etomidate decreased both the affinity and the number of binding sites of TBPT to whole brain membranes. The IC50 values of (+)etomidate (9 μ M ) and pentobarbital (90 μ M ) are similar to the EC50 values at which they enhance both [3H]-γ-aminobutyric acid and [3H]diazepam binding in cerebral cortex membranes. RO5–4864, which has recently been shown to be a convulsant, also inhibited TBPT binding (IC50= 10 μ M ). These results suggest that TBPT binds to the picrotoxinin site and further supports the notion that the picrotoxinin site is an important modulatory site at the benzodiazepine-GABA receptor-ionophore complex.  相似文献   

14.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3H] 5, 7-dichlorokynurenic acid ([3H]- DCKA) but not of the agonist ligand [3H] glycine ([3H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3H] DCKA binding with [3H] Gly binding being unaltered. Moreover, the densities of [3H] DCKA binding were not significantly different from those of [3H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3H] Gly binding than of [3H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain.  相似文献   

15.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

16.
Abstract. Although the rat salivary glands are deficient in acini at birth, acinar cells proliferate rapidly during the early post-natal period. The pattern of acinar cell proliferation was analysed in the parotid and submandibular glands of neonatal rats from day of birth until day 34. Mitotic and [3H]thymidine ([3H]TdR) labelling indices of the two glands show distinctly different patterns. Analysis of cell division in the rat parotid gland demonstrated a peak of mitotic index at 14 days (2.9 ± 0.4%) and labelling index at 16 days (25.2 ± 2.1%). Submandibular gland acinar cell proliferation reaches a zenith between 7–8 days; labelling index (14.2 ± 1.1%) and mitotic index (2.3 ± 0.3%). Cell proliferation decreases rapidly in both glands after reaching a peak in activity. Gland size increases more rapidly in the submandibular gland which correlates with the earlier shift from cell proliferation to differentiation which occurs in this organ. Circadian rhythms of [3H]TdR incorporation were also investigated in this study. A circadian rhythm of [3H]TdR incorporation into DNA occurs at 15 days after birth with a peak at 06.00 hours in both glands and a trough occurring at 15.00 hours in parotid gland and 18.00 hours in the submandibular gland. Determination of specific activity of DNA (ct/min per μg DNA) on days 8, 10, 12, 13, 14, 15, and 16 after birth at 06.00 and 15.00 hours indicated that a circadian rhythm in [3H]TdR incorporation into DNA began on day 14. The developmental switch from suckling to solid food may be an initiating factor in the sychronization of the circadian rhythm in cell proliferation.  相似文献   

17.
Abstract: [3H]Dihydroergocryptine ([3H]DHE) binds to a particulate preparation from Drosophila melanogaster heads at a level of 2.4 ± 0.4 pmol/mg protein, with an apparent dissociation constant of 2.0 ± 0.5 n M . The binding sites are inactivated by heat, pronase treatment, detergents, and sulfhydryl and disulfide reagents. [3H]DHE binding is inhibited by low concentrations of serotonergic and α-adrenergic ligands. The specificity of the binding sites, as revealed by displacement studies, differs from that of [3H]DHE binding sites in various vertebrate tissues. The [3H]DHE binding sites may correspond to serotonergic receptors, and possibly, to additional classes of receptors for putative neurotransmitters in Drosophila .  相似文献   

18.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   

19.
Abstract— [3H]Choline uptake has been measured in vivo in the rat hippocampus. Pharmacological agents and lesions which profoundly affect sodium-dependent, high-affinity [3H]choline uptake in vivo similarly affect [3H]choline uptake measured in vitro. Pentobarbital (65 mg/kg) and oxotremorine (0.75 mg kg) cause a decrease in [3H]choline uptake. Scopolamine (5 mg/kg) and iontophoretically applied extracellular potassium cause an increase in [3H]choline uptake. Septal lesions cause a decrease in [3H]choline uptake. Application of the general method may allow direct examination of presynaptic function and neural integration in the undisrupted living mammalian brain.  相似文献   

20.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:4,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号