首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

2.
pH-Dependence of hydrolytic activity of trypsin has been studied in cationic reverse micellar system of cetyltrimethylammonium bromide (CTAB) in (50% v/v) chloroform/isooctane using a positively charged substrate Nα-benzoyl-L-arginine ethyl ester (BAEE). The pH of the medium was varied from 4.0 to 8.5 with addition of 0.025 M citrate-phosphate buffer containing 1 mM CaCl2. Optimum pH for maximum enzyme activity, pHopt in reverse micelles is found to be similar to that observed in bulk aqueous solution (8.0–8.5). However, changes in activity of trypsin (kcat) as a function of water content W0 (W0 = [H2O]/[CTAB]) in reverse micelles are found to be pH dependent. At low pH (4.0) and low water content (W0 = 5) the enzyme is more active in reverse micelles than in bulk aqueous solution by a factor of 2. This ‘superactivity’ is lost at higher W0 values and the kcat in reverse micelles is found to be similar to that observed in aqueous bulk. At pH 5, the enzyme activity is found to be independent of W0 while at pH 6.0–6.5 the enzyme activity is low at W0 5 and increases with water content to a constant value which is still 50% lower than that in aqueous buffer. Above pH 7, the Wo-activity profile becomes distinctly bell shaped with W0 optimum around 10–15. The enzyme activity at optimum W0 is close to that observed in aqueous bulk.  相似文献   

3.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacteriumviscosum lipase (glycerol–ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30–40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

4.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w 0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

5.
Lipases from Candida cyclindracea (L-1754) and wheat germ (L-3001) have been used to hydrolyze esters to their corresponding alcohols and acids in reverse micelles. Alcohol dehydrogenase from baker's yeast (YADH) was subsequently used to reduce the alcohol products to aldehydes. Cofactor recycling in the redox reaction was achieved using a sacrificial cosubstrate, as described previously. Four surfactants (sodium dioctylsulfosuccinate, Nonidet P-40 with Triton X-35, polyoxyethylene, 10-cetyl-ether, polyoxyethylene sorbitan trioleate) were employed to determine the effect of amphiphile on ester hydrolysis and redox reaction rates separately. The effect of type of organic solvent, W(0) [(water]/[surfactant)], and substrate concentration on separte enzyme activity were also investigated. A brief investigation of a single phase, two-step reaction catalyzed by the combination of lipase and YADH in reverse micelles is also reported. The activities of the enzymes are significantly different when used together instead of independently. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

7.
Reverse micelles formed by soybean lecithin in isooctane were used as a reaction medium for both the lipase-catalyzed hydrolysis as well as the synthesis of lipids. Neither reaction appears to follow Michaelis-Menten kinetics and it is suggested that the rates are diffusion controlled. The hydrolysis of para-nitrophenylpalmitate (PNPP) and, in particular, the pH-dependency of the lipase-catalyzed hydrolysis was then examined. The highest rate of reaction occurred at pHopt = 5–5.5, which was the same in water and lecithin reverse micelles, as well as in reverse micelles formed by bis(2-ethylhexyl)-sulfosuccinate (AOT) in isooctane. The dependence of the reaction rate on the water content of the micellar system was investigated for the same reaction. The maximal rate was found at an extremely low water content, i.e. at Wo = 2.2 (Wo = [H2O]/[Lecithin]). The temperature stability of the lipase in lecithin reverse micelles was also studied and found to be greater than in aqueous solutions. Studies of the dependence of the relative initial velocity on temperature have shown that the highest rate in reverse micelles is obtained at 60d`C.  相似文献   

8.
The recovery of cytochrome c and ribonuclease A from di-2-ethylhexyl sodium sulfosuccinate (AOT) reverse micelles have been examined by the gas hydrate formation. The recovery of cytochrome c depended upon the kind of gas and the water content (w0=[H2O]/[AOT]) of reverse micellar solution containing cytochrome c prepared. Recoveries of cytochrome c and ribonuclease A were more than 80%, when 1,1,1,2-tetrafluoroethane (TFE) was used as a hydrating gas. The activity of cytochrome c recovered from reverse micelles was maintained perfectly.  相似文献   

9.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

10.
Reverse micelles serve as a novel tool to entrap enzymes and microbial whole cells within aqueous pockets and can be of great use in enhancing the efficiency and sustainability of the biological system. Photosynthetic bacterium Rhodopseudomonas sphaeroides entrapped inside the aqueous pool of reverse micelles prepared from benzene-sodium lauryl sulphate exhibited 25-fold enhancement of H2 photoproduction rate (1.67 ml H2 [mg protein]1 h–1) compared to cells suspended in normal aqueous medium. Hydrogen photoproduction by the bacterium was catalysed by the nitrogenase enzyme system which was supported at a low light intensity of 12 Em–2 sec–1 photon flux energy at a wavelength of 520 nm. The optimum temperature for the process was 40 °C.  相似文献   

11.
The effect of water on the primary photosynthetic activity of purple bacterium Rhodospirillum rubrum was studied in Hexadecane-Tween-Spane (HTS)- and phospholipid (PLC)-reverse micelles. Reverse micelles offer the possibility of modulating the amount of water to which enzymes and multienzymatic complexes are exposed. Fast bacteriochlorophyll (BChl) fluorescence induction kinetics and reaction centre absorption changes at 820 nm were used as an assay for the functional transfer of bacterial cells into HTS-reverse micelles and bacterial photosynthetic complexes (BPC) into PLC-reverse micelles. Both the bacterial cells and BPC showed an increase in the rate of primary photosynthetic activity by increasing the concentration of water in the reverse micelles. The bacterial cells could be kept viable for many hours in HTS-reverse micelles in presence of 6% (v/v) water. NMR studies indicated that the photosynthetic activity was affected by the availability of water in reverse micelles. The bacterial cells in HTS or BPC in PLC reverse micelles could be used to further understand the influence of water on the organisation and function of photosynthetic complexes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The enzymatic activity of tyrosinase was studied both in aqueous and organic media. In the latter case tyrosinase was entrapped in a system of reverse micelles of Aerosol OT in octane. At hydration degree 25, when the inner cavity of the reverse micelles was comparable with the size of a tetrameric tyrosinase form known for aqueous solutions, an optimum level of catalytic activity was observed. Another peak of catalytic activity of tyrosinase was observed at hydration degree 12, when the size of the inner cavity of the reverse micelles was consistent with a monomeric form of tyrosinase. Thus, the system of reverse micelles can be exploited as a medium for the investigation of the monomeric form of tyrosinase, which is unstable in aqueous solution.  相似文献   

13.
The activity of Candida rugosa lipase (EC 3.1.1.3) in reverse micelles has been measured at various concentrations of water and enzyme with the aim of answering the question, why is the enzyme activity affected by the molar ratio of water to surfactant (w0 = [H2O]/[Surfactant])? In the low range of water content (below w0 ≈ 6), the activity increases with increasing water content, indicating the requirement of a minimum amount of water for the full expression of enzymatic activity. The minimal w0-value for obtaining maximal activity depends on the enzyme concentration: The higher the enzyme concentration, the higher w0, max. In addition, it was found that, at least for the case of Candida rugosa lipase, the measured dependence of enzyme activity on w0 does not represent a true chemical equilibrium. Changing the w0-value during the reaction does not change the activity as expected on the basis of the w0-activity profile obtained for single w0 point measurements. All these observations, however, cannot be directly generalized to all enzymes in reverse micelles, due to the peculiarity of lipase. In particular, the enzyme seems to inactivate irreversibly during the solubilization process.  相似文献   

14.
A monomeric form of acetylcholinesterase from the venom of Bungarus fasciatus is converted to a partially unfolded molten globule species by thermal inactivation, and subsequently aggregates rapidly. To separate the kinetics of unfolding from those of aggregation, single molecules of the monomeric enzyme were encapsulated in reverse micelles of Brij 30 in 2,2,4-trimethylpentane, or in large unilamellar vesicles of egg lecithin/cholesterol at various protein/micelle (vesicle) ratios. The first-order rate constant for thermal inactivation at 45 degrees C, of single molecules entrapped within the reverse micelles (0.031 min(-1)), was higher than in aqueous solution (0.007 min(-1)) or in the presence of normal micelles (0.020 min(-1)). This clearly shows that aggregation does not provide the driving force for thermal inactivation of BfAChE. Within the large unilamellar vesicles, at average protein/vesicle ratios of 1:1 and 10:1, the first-order rate constants for thermal inactivation of the encapsulated monomeric acetylcholinesterase, at 53 degrees C, were 0.317 and 0.342 min(-1), respectively. A crosslinking technique, utilizing the photosensitive probe, hypericin, showed that thermal denaturation produces a distribution of species ranging from dimers through to large aggregates. Consequently, at a protein/vesicle ratio of 10:1, aggregation can occur upon thermal denaturation. Thus, these experiments also demonstrate that aggregation does not drive the thermal unfolding of Bungarus fasciatus acetylcholinesterase. Our experimental approach also permitted monitoring of recovery of enzymic activity after thermal denaturation in the absence of a competing aggregation process. Whereas no detectable recovery of enzymic activity could be observed in aqueous solution, up to 23% activity could be obtained for enzyme sequestered in the reverse micelles.  相似文献   

15.
Micellar catalysis of polyphenol oxidase in AOT/cyclohexane   总被引:4,自引:0,他引:4  
The catalytic behaviour of mushroom polyphenol oxidase has been studied in dioctylsulphosuccinate (AOT)/cyclohexane reverse micelles. The steady-state conditions were accomplished up to 20 min and 17 μg protein in the assay towards 4-methylcatechol and no loss of specific activity was observed relative to aqueous medium. The pH activity profile of the enzyme was kept in reverse micelles as in water, showing a plateau between 5 and 6.5. The stability of polyphenol oxidase to pH was also studied and about 20% inactivation was found in reverse micelles relative to aqueous medium at neutral pHs. Moreover there was a decrease of stability at acidic pHs. The optimum Wo obtained was 20 and the enzyme was nearly independent of the surfactant concentration at constant Wo.

Kinetic studies of polyphenol oxidase towards several substrates showed that the substrate inhibition by p-cresol and 4-methylcatechol observed in buffer was not kept in AOT/cyclohexane reverse micelles. Moreover, the Km increased and the catalytic efficiency (V/Km) of the enzyme decreased as the hydrophobicity of substrates was increased.  相似文献   


16.
The concentrations of dioctyldimethyl ammonium chloride (DODMAC) and 1-decanol in isooctane needed to form reverse micelles by phase contact have been determined. The behavior of these reverse micelles in the extraction of aspartic acid, glutamic acid, and threonine was studied by analyzing all of the ionic species in the aqueous phase. The amino acid is extracted from the aqueous phase by exchanging with the Cl(-) counterions of DODMAC in the reverse micelles. The ionic species in the reverse micelles tend toward their undissociated states as the water uptake by the reverse micelles decreases. The effect of 1-decanol on the extraction of the amino acids with two negative charges is due to the change in the water uptake of the reverse micelles. The concentration of DODMAC has no effect on the ion exchange of the amino acid with one negative charge with the Cl(-) counterions of DODMAC in the reverse micelles. Higher molar ratios of decanol to DODMAC favor the selective separation of amino acids with different charge numbers. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Dioctyldimethyl ammonium chloride (DODMAC) was used to form reverse micelles and to extract lysozyme from an aqueous solution into an organic phase. The solubilization behavior of lysozyme into a DODMAC reverse micellar phase was examined in terms of the temperature, the type of cations in the aqueous phase, and the surfactant concentration in the organic phase. Complete removal of lysozyme from the aqueous phase was obtained when the pH was set one unit higher than the pI of the protein. However, it was found that there is a solubilization limit of lysozyme in the organic phase. Not all the lysozyme extracted out of the initial aqueous phase was solubilized into the DODMAC reverse micellar phase, resulting in the formation of white precipitate at the aqueous-organic interface. Temperature has a negligible effect on the solubilization limit of lysozyme. The value of the solubilization limit is a strong function of the type of cations present in the aqueous phase, indicating an important role of lysozyme-cation interactions on the extraction process. An increase in the DODMAC concentration from 100-200 mM resulted in little change in the highest concentration of lysozyme obtained in the organic phase.  相似文献   

18.
A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Trypsin and alpha-chymotrypsin were immobilized by gelentrapment in polyacrylamide cross-linked with N,N(1)-methylenebisacrylamide. The immobilized enzymes are catalytically efficient in suspensions of reverse micelles formed in isooctane by bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and water. Both entrapped enzymes are stable in reverse micellar suspension at room temperature and pH 8.2 for 3 days and lose 30-40% activity after 1 week. The enzymes obey Michaelis-Menten kinetics in the investigated concentration range with K(m) values higher than those in solution. Activity of the enzymes is independent of the water content of the micellar solution. No shift in pH optimum was observed for immobilized trypsin activity toward Nalpha-benzoyl-L-arginine ethyl ester. The utility of the procedure, which combines the advantage of enzyme immobilization and enzymology in reverse micelles, is illustrated by an example of peptide synthesis. In particular, peptide synthesis (e. g., Z--Ala--Phe--Leu--NH(2)) using water-insoluble substrate has been performed with gelentrapped alpha-chymotrypsin in reverse micellar suspension with the advantage of efficient enzyme recycling.  相似文献   

20.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号