首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference is a widely used tool for analysis of gene function in mammalian cells. Stable knockdown of specific target genes can be maintained in cell lines and live organisms using vector-based delivery of short hairpins (shRNAs) driven by RNA polymerase III promoters. Here we describe a vector incorporating the human 7SK promoter for shRNA-mediated gene silencing in the P19 embryonic carcinoma stem cell line. Our preliminary experiments with the 7SK shRNA expression vector indicated that its activity could be hindered by random genomic integration. In order to counter this inhibitory mechanism, we inserted a matrix-attached region sequence to generate an episomal vector system. We compared the effects of insertion versus exclusion of the MAR sequence on the shRNA-mediated gene-specific silencing of the beta-tubulin III and Cyclophilin A genes. While the MAR sequence is not strongly correlated with the episomal status of the expression vector, our studies indicate that inclusion of the MAR element significantly enhances the stability of shRNA-mediated gene silencing in the P19 stem cells.  相似文献   

2.
3.
4.
RNA interference has recently become a useful research tool for the studies of gene functions, regulations, and therapies. The double-stranded RNA is utilized to induce the sequence-specific gene silencing. To achieve this goal of specific gene silencing, a proper delivery system of siRNA is highly demanded. A number of approaches for delivering siRNA have been explored over the last few years. In the present study, we demonstrated a simple peptide-based siRNA delivery system in mammalian cells. A GC-EGFP cell line stably expressing enhanced green fluorescent protein was established from stable transfection of human gastric carcinoma cells. The synthetic nona-arginine peptide, an arginine-rich intracellular delivery peptide, or called protein transduction domain peptide, could noncovalently form stable complexes with EGFP siRNA and deliver these mixtures into cells. After entry, siRNA appeared to stay in perinuclear regions within cell, and ultimately fulfilled its targeted egfp gene silencing. These data were in consonance with that RNA-induced silencing complex components could be also localized to these perinuclear regions, creating a focal point for RNA interference factories. In the future, this non-toxic peptide may be proved to be a useful tool for the delivery of exogenous siRNA in RNA interference research.  相似文献   

5.
RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.  相似文献   

6.
Sandy P  Ventura A  Jacks T 《BioTechniques》2005,39(2):215-224
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for the functional annotation of the Caenorhabditis elegans and Drosophila melanogaster genomes. Recent advances in the design and delivery of targeting molecules now permit efficient and highly specific gene silencing in mammalian systems as well. RNAi offers a simple, fast, and cost-effective alternative to existing gene targeting technologies both in cell-based and in vivo settings. Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) libraries targeting thousands of human and mouse genes are publicly available for high-throughput genetic screens, and knockdown animals can be rapidly generated by lentivirus-mediated transgenesis. RNAi also holds great promise as a novel therapeutic approach. This review provides insight into the current gene silencing techniques in mammalian systems.  相似文献   

7.
8.
9.
RNA interference has recently become a useful research tool for the studies of gene functions, regulations, and therapies. The double-stranded RNA is utilized to induce the sequence-specific gene silencing. To achieve this goal of specific gene silencing, a proper delivery system of siRNA is highly demanded. A number of approaches for delivering siRNA have been explored over the last few years. In the present study, we demonstrated a simple peptide-based siRNA delivery system in mammalian cells. A GC-EGFP cell line stably expressing enhanced green fluorescent protein was established from stable transfection of human gastric carcinoma cells. The synthetic nona-arginine peptide, an arginine-rich intracellular delivery peptide, or called protein transduction domain peptide, could noncovalently form stable complexes with EGFP siRNA and deliver these mixtures into cells. After entry, siRNA appeared to stay in perinuclear regions within cell, and ultimately fulfilled its targeted egfp gene silencing. These data were in consonance with that RNA-induced silencing complex components could be also localized to these perinuclear regions, creating a focal point for RNA interference factories. In the future, this non-toxic peptide may be proved to be a useful tool for the delivery of exogenous siRNA in RNA interference research.  相似文献   

10.
11.
Electro-transfer of small interfering RNA ameliorated arthritis in rats   总被引:3,自引:0,他引:3  
RNA interference provides the powerful means of sequence-specific gene silencing. Particularly, small interfering RNA (siRNA) duplexes may be potentially useful for therapeutic molecular targeting of human diseases, although novel delivery systems should be devised to achieve efficient and organ-specific transduction of siRNA. In the present study, we demonstrated that electro-transfer of a siRNA-polyamine complex made efficient and specific gene knockdown possible in the articular synovium. Targeted suppression of the tumor necrosis factor-alpha gene through this procedure significantly ameliorated collagen-induced arthritis in rats. Our results suggest the potential feasibility of therapeutic intervention with RNA medicines for treatment of rheumatoid and other locomotor diseases.  相似文献   

12.
RNAi (RNA interference) has been widely used to silence specific genes. However, RNAi may also cause off-target silencing and elicit non-specific side effects. To achieve cell-specific gene silencing, a cell-selective promoter has to be used to drive RNAi expression. Furthermore, different terminators of cell-selective promoters may cause different silencing efficacies. In order to explore the best promoter and terminator combination and prove the cell-selective gene silencing effect of PSMAe/p (prostate-specific membrane antigen enhancer/promoter), we first constructed three plasmids by using PSMAe/p and three different terminators [poly(A), minipoly(A) and poly(U)] to explore the cell-selective driving ability of PSMAe/p by targeting EGFP (enhanced green fluorescent protein) in LNCaP, PC-3, EJ and HEK-293 (human embryonic kidney) cells. Then we chose NS (nucleostemin), an important endogenous gene of prostate cancer, and constructed the NS-targeting shRNA (small-hairpin RNA) expression plasmid by using PSMAe/p-poly(A) combination. Cell proliferation, cell cycle and early apoptosis in vitro and xenograft tumour growth in BALB/c nude mice in vivo were detected after NS knockdown. Results showed that PSMAe/p can drive EGFP silencing in LNCaP, not in PC-3, EJ and HEK-293 cells and PSMAe/p-poly(A) combination achieved the best silencing efficacy. Then PSMAe/p-shNS-poly(A) drives NS knockdown in LNCaP cells, not in PC-3, EJ and HEK-293 cells. Furthermore, RNAi-mediated NS knockdown not only reduces cell proliferation rate, reduces the percentage of S-stage cells and increases the percentage of G1-stage cells and increases the early apoptosis ratio in LNCaP cells in vitro, but also inhibited the LNCaP xenograft tumour growth in BALB/c nude mice in vivo by intratumoural injection. In conclusion, we have demonstrated that PSMAe/p-poly(A) combination is a promising delivery system for targeted RNAi gene therapy of prostate cancer. We showed one effective antitumour strategy by targeting NS protein, an important target in prostate cancer, with PSMAe/p-shNS-poly(A). These results serve as an important step for developing novel strategies to treat prostate cancer.  相似文献   

13.
RNA interference (RNAi) has emerged as a powerful technique to downregulate gene expression. The use of polIII promoters to express small hairpin RNAs (shRNAs), combined with the versatility and robustness of lentiviral vector-mediated gene delivery to a wide range of cell types offers the possibility of long-term downregulation of specific target genes both in vitro and in vivo. The use of silencing lentivectors allows for a rapid and convenient way of establishing cell lines (or transgenic mice) that stably express shRNAs for analysis of phenotypes produced by knockdown of a gene product. Here we present two possible protocols describing the design and cloning of silencing lentiviral vectors. These protocols can be completed in less than 3 weeks.  相似文献   

14.
RNA interference (RNAi) efficiently induces sequence-specific gene silencing in mammalian cells through short interfering RNA (siRNA) of 21–23 nucleotides synthesized in vitro or expressed by DNA-based vector. However, introduction of siRNA into mammalian cells by transfection limits the application of RNAi, especially when it is necessary to generate long-term gene silencing in vivo. Virus vector-mediated RNAi provides an alternative to transfection. In the present study, we investigated such transduction system and showed that retrovirus vector-mediated RNAi can substantially down-regulate expression of mouse adult β-globin gene in MEL cells. The results suggest that retrovirus vector-delivered RNAi may find its use in functional genomics and in gene therapy.  相似文献   

15.
RNA interference (RNAi) is an evolutionarily conserved process of gene silencing in multiple organisms, which has become a powerful tool for investigating gene function by reverse genetics. Recently, many groups have reported to use synthesized oligonucleotides or siRNA encoding plasmids to induce RNAi in mammalian cells by transfection, but this is still limited in its application, especially when it is necessary to generate long-term gene silencing in vivo. To circumvent this problem, retrovirus- or lentivirus-delivered RNAi has been developed. Here, we described two retroviral systems for delivering short hairpin RNA (shRNA) transcribed from the H1 promoter. The results showed that retroviral vector-mediated RNAi can substantially downregulate the expression of human p53 in 293-T cells. Furthermore, the retroviral vectormediated RNAi in our transduction system can stably inactivate the p53 gene for a long time. Compared to shRNAs transcribed from the U6 promoter, HI-driven shRNA also dramatically reduced the expression of p53. The p53 downregulation efficiencies of H1- and U6-driven shRNAs were almost identical. The results indicate that retroviral vector-delivered RNAi would be a useful tool in functional genomics and gene therapy.  相似文献   

16.
Gene targeting via homologous recombination in murine embryonic stem (ES) cells has been the method of choice for deciphering mammalian gene function in vivo. Despite improvements in this technology, it still remains a laborious method. Recent advances in RNA interference (RNAi) technology have provided a rapid loss-of-function method for assessing gene function in a number of organisms. Studies in mammalian cell lines have shown that introduction of small interfering RNA (siRNA) molecules mediates effective RNA silencing. Plasmid-based systems using RNA polymerase III (RNA pol III) promoters to drive short hairpin RNA (shRNA) molecules were established to stably produce siRNA. Here we report the generation of knockdown ES cell lines with transgenic shRNA. Because of the dominant nature of the knockdown, embryonic phenotypes could be directly assessed in embryos completely derived from ES cells by the tetraploid aggregation method. Such embryos, in which endogenous p120-Ras GTPase-activating protein (RasGAP), encoded by Rasa1 (also known as RasGAP), was silenced, had the same phenotype as did the previously reported Rasa1 null mutation.  相似文献   

17.
RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.  相似文献   

18.
Analysis of gene function in somatic mammalian cells using small interfering RNAs   总被引:175,自引:0,他引:175  
RNA interference (RNAi) is a highly conserved gene silencing mechanism that uses double-stranded RNA (dsRNA) as a signal to trigger the degradation of homologous mRNA. The mediators of sequence-specific mRNA degradation are 21- to 23-nt small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Twenty-one-nucleotide siRNA duplexes trigger specific gene silencing in mammalian somatic cells without activation of the unspecific interferon response. Here we provide a collection of protocols for siRNA-mediated knockdown of mammalian gene expression. Because of the robustness of the siRNA knockdown technology, genomewide analysis of human gene function in cultured cells has now become possible.  相似文献   

19.
Abstract

Magnetic force combined with magnetic nanoparticles recently has shown potential for enhancing nucleic acid delivery. Achieving effective siRNA delivery into primary cultured cells is challenging. We compared the utility of magnetofection with lipofection procedures for siRNA delivery to primary and immortalized mammalian fibroblasts. Transfection efficiency and cell viability were analyzed by flow cytometry and effects of gene knockdown were quantified by real-time PCR. Lipofectamine 2000 and magnetofection achieved high transfection efficiencies comparable to similar gene silencing effects of about 80%; the cytotoxic effect of magnetofection, however, was significantly less. Magnetofection is a reliable and gentle alternative method with low cytotoxicity for siRNA delivery into difficult to transfect cells such as mammalian fibroblasts. These features are especially advantageous for functional end point analyses of gene silencing, e.g., on the metabolite level.  相似文献   

20.
Unlike in other eukaryotes, in which it causes gene silencing, RNA interference (RNAi) has been linked to programmed DNA deletion in the ciliate Tetrahymena thermophila. Here we have developed an efficient method to inducibly express double-stranded RNA hairpins and demonstrated that they cause gene silencing through targeted mRNA degradation in all phases of the life cycle, including growth, starvation, and mating. This technique offers a new tool for gene silencing in this model organism. Induction of RNA hairpins causes dramatic upregulation of Dicer and Argonaute family genes, revealing a system capable of rapidly responding to double-stranded RNA. These hairpins are processed into 23- to 24-nucleotide (nt) small RNAs, which are distinctly different from the 28- to 30-nt small RNAs known to be associated with DNA deletion. Thus, two different small RNA pathways appear to be responsible for gene silencing and DNA deletion. Surprisingly, expression of the RNA hairpin also causes targeted DNA deletion during conjugation, although at low efficiencies, which suggests a possible crossover of these two molecular paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号