首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic Solutes in Hyperthermophilic Archaea   总被引:8,自引:2,他引:6       下载免费PDF全文
We examined the accumulation of organic solutes under optimum growth conditions in 12 species of thermophilic and hyperthermophilic Archaea belonging to the Crenarchaeota and Euryarchaeota. Pyrobaculum aerophilum, Thermoproteus tenax, Thermoplasma acidophilum, and members of the order Sulfolobales accumulated trehalose. Pyrococcus furiosus accumulated di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate and (beta)-mannosylglycerate, Methanothermus fervidus accumulated cyclic-2,3-bisphosphoglycerate and (beta)-mannosylglycerate, while the only solute detected in Pyrodictium occultum was di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate. Methanopyrus kandleri accumulated large concentrations of cyclic-2,3-bisphosphoglycerate. On the other hand, Archaeoglobus fulgidus accumulated three phosphorylated solutes; prominent among them was a compound identified as di-glycerol-phosphate. This solute increased in concentration as the salinity of the medium and the growth temperature were raised, suggesting that this compound serves as a general stress solute. Di-myo-inositol-1,1(prm1)(3,3(prm1))-phosphate accumulated at supraoptimal temperature only. The relationship between the accumulation of unusual solutes and high temperatures is also discussed.  相似文献   

2.
极端嗜热古菌的热休克蛋白   总被引:4,自引:0,他引:4  
随着生物工程产业对于耐高温酶和菌体的需求, 极端嗜热古菌热休克蛋白(heat shock proteins, HSPs)的研究更受重视, 其热休克蛋白体系非常简洁, 不含HSP100s和HSP90s, 就是HSP70(DnaK)、HSP40、(DnaJ)和GrpE等嗜温古菌可能含有的在极端嗜热古菌中几乎不含有, 即仅包括HSP60, sHSP, prefoldin和AAA+蛋白四大类, 因此对其结构、功能和作用机制的研究在理论和实践上都特别有意义。系统地介绍了这四大类组分的结构、功能和作用机制和协同作用的研究进展, 论述了极端嗜热古菌热休克蛋白的系列研究难点和困惑, 展望了进一步的研究方向和重点。  相似文献   

3.
The genes encoding new trehalose-producing enzymes from S. acidocaldarius ATCC33909 were cloned to analyze the distribution of these genes in Sulfolobales. Comparison of the amino acid sequences with S. solfataricus KM1 showed approximately 50% similarity. Southern analysis suggests that homologues of the trehalose-producing enzyme genes exist widely in Sulfolobales and strains in Sulfolobales were classified into three kinds of genotypes.  相似文献   

4.
Based on the analysis of nucleotide sequences of 16S rRNA, oligonucleotide probes were designed for the detection and identification of representatives of the genus Desulfurococcus (kingdom Crenarchaeota of the domain Archaea). The detection procedure included obtaining PCR products on DNA isolated from pure cultures, enrichments, or natural samples with a designed Crenarchaeota-specific primer pair: Cren 7F (5"-TTCCGGTTGATCCYGCCGGACC-3") and Cren 518R (5"-GCTGGTWTTACCGCGGCGGCTGA-3"). The PCR products were hybridized with Dig-11-dUTP–labeled oligonucleotide probes targeting the genus Desulfurococcus (Dco 198, 5"-CGTTAACYCCYGCCACACC-3") and its species D. mobilis (Dco_mob 198, 5"-CGTTAACCCCTGCCACACC-3") and D. amylolyticus (Dco_amy 198, 5"-CGTTAACCCCCGCCACACC-3"). With the use of these primers and probes, four new strains isolated from hydrotherms of Kamchatka and Kunashir Island were identified as members of the speciesDesulfurococcus amylolyticus. Desulfurococcus representatives were detected in several natural samples, including a sample taken from a marine hydrotherm at Kunashir Island; this demonstrates that representatives of this genus occur not only in terrestrial but also in marine environments.  相似文献   

5.
We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, d-xylose and l-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of d-xylose and l-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.  相似文献   

6.
Pyrobaculum islandicum uses iron, thiosulfate, and elemental sulfur for anaerobic respiration, while Pyrobaculum aerophilum uses iron and nitrate; however, the constraints on these processes and their physiological mechanisms for iron and sulfur reduction are not well understood. Growth rates on sulfur compounds are highest at pH 5 to 6 and highly reduced (<−420-mV) conditions, while growth rates on nitrate and iron are highest at pH 7 to 9 and more-oxidized (>−210-mV) conditions. Growth on iron expands the known pH range of growth for both organisms. P. islandicum differs from P. aerophilum in that it requires direct contact with insoluble iron oxide for growth, it did not produce any extracellular compounds when grown on insoluble iron, and it lacked 2,6-anthrahydroquinone disulfonate oxidase activity. Furthermore, iron reduction in P. islandicum appears to be completely independent of c-type cytochromes. Like that in P. aerophilum, NADH-dependent ferric reductase activity in P. islandicum increased significantly in iron-grown cultures relative to that in non-iron-grown cultures. Proteomic analyses showed that there were significant increases in the amounts of a putative membrane-bound thiosulfate reductase in P. islandicum cultures grown on thiosulfate relative to those in cultures grown on iron and elemental sulfur. This is the first evidence of this enzyme being used in either a hyperthermophile or an archaeon. Pyrobaculum arsenaticum and Pyrobaculum calidifontis also grew on Fe(III) citrate and insoluble iron oxide, but only P. arsenaticum could grow on insoluble iron without direct contact.  相似文献   

7.
Identification of the earliest traces of life is made difficult by the scarcity of the preserved microbial remains and by the alteration and potential contamination of the organic matter (OM) content of rocks. These factors can confuse interpretations of the biogenicity and syngenicity of fossilised structures and organic molecules found in ancient rocks. In order to improve our knowledge of the fossilisation processes and their effects at the molecular level, we made a preliminary study of the fate of OM during experimental fossilisation. Changes in the composition and quantity of amino acids, monosaccharides and fatty acids were followed with HPLC, GC and GC-MS analyses during 1 year of silicification of the hyperthermophilic Archaea Methanocaldococcus jannaschii. Although the cells themselves did not fossilise and the accompanying extracellular polymeric substances (EPS) did, our analyses showed that the OM initially present in both cells and EPS was uniformly preserved in the precipitated silica, with amino acids and fatty acids being the best preserved compounds. This study thus completes previous data obtained by electron microscopy investigations of simulated microbial fossilisation and can help better identification and interpretation of microbial biosignatures in both ancient rocks and in recent hydrothermal formations and sediments.  相似文献   

8.
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117°C) and surface seawater (29.9°C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82°C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84°C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84°C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.  相似文献   

9.
The lethal and mutagenic effects of ethyl methanesulfonate (EMS) and UV on nine archaeal strains belonging to each of the two described genera of Thermococcales, Pyrococcus and Thermococcus, were investigated. To test the efficiency of the EMS and UV mutagenesis under a variety of experimental conditions, we chose Pyrococcus abyssi strain GE5 as a model strain. We observed a strong induced mutagenicity in both cases, since the spontaneous mutation frequency (expressed as the frequency of resistance to 5-fluoroorotic acid) increased up to 150-fold with EMS and 400-fold with UV, after mutagen exposure. Although a heterogeneous response to the induced effects caused after EMS and UV exposures was detected for all the other sulfothermophilic archaea tested, an efficient mutagenicity of Pyrococcus-like isolates GE27, GE23, and GE9 was observed. Optimal procedures described for UV mutagenesis yielded a number of useful uracil auxotrophic mutant strains of Pyrococcus abyssi. Received: 2 May 1996 / Accepted: 3 July 1996  相似文献   

10.
Protein-tyrosine dephosphorylation is a major mechanism in cellular regulation. A large number of protein-tyrosine phosphatases is known from Eukarya, and more recently bacterial homologues have also been identified. By employing conserved sequence patterns from both eukaryotic and bacterial protein-tyrosine phosphatases, we have identified three homologous sequences in two of the four complete archaeal genomes. Two hypothetical open reading frames in the genome of Methanococcus jannaschii (MJ0215 and MJECL20) and one in the genome of Pyrococcus horikoshii (PH1732) clearly bear all the conserved residues of this family. No homologues were found in the genomes of Archaeoglobus fulgidus and Methanobacterium thermoautotrophicum. This is the first report of protein-tyrosine phosphatase sequences in Archaea. Received: 29 April 1998 / Accepted: 27 November 1998  相似文献   

11.
A Novel DNA Polymerase Family Found in Archaea   总被引:4,自引:0,他引:4       下载免费PDF全文
One of the most puzzling results from the complete genome sequence of the methanogenic archaeon Methanococcus jannaschii was that the organism may have only one DNA polymerase gene. This is because no other DNA polymerase-like open reading frames (ORFs) were found besides one ORF having the typical α-like DNA polymerase (family B). Recently, we identified the genes of DNA polymerase II (the second DNA polymerase) from the hyperthermophilic archaeon Pyrococcus furiosus, which has also at least one α-like DNA polymerase (T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, Genes Cells 2:499–512, 1997). The genes in M. jannaschii encoding the proteins that are homologous to the DNA polymerase II of P. furiosus have been located and cloned. The gene products of M. jannaschii expressed in Escherichia coli had both DNA polymerizing and 3′→5′ exonuclease activities. We propose here a novel DNA polymerase family which is entirely different from other hitherto-described DNA polymerases.  相似文献   

12.
In all three domains of life, N-glycosylation begins with the assembly of glycans on phosphorylated polyisoprenoid carriers. Like eukaryotes, archaea also utilize phosphorylated dolichol for this role, yet whereas the assembled oligosaccharide is transferred to target proteins from dolichol pyrophosphate in eukaryotes, archaeal N-linked glycans characterized to date are derived from a dolichol monophosphate carrier, apart from a single example. In this study, glycan-charged dolichol phosphate from the hyperthermophile Pyrococcus furiosus was identified and structurally characterized. Normal and reverse phase liquid chromatography-electrospray ionization mass spectrometry revealed the existence of dolichol phosphate charged with the heptasaccharide recently described in in vitro studies of N-glycosylation on this species. As with other described archaeal dolichol phosphates, the α- and ω-terminal isoprene subunits of the P. furiosus lipid are saturated, in contrast to eukaryal phosphodolichols that present only a saturated α-position isoprene subunit. Interestingly, an additional 1-4 of the 12-14 isoprene subunits comprising P. furiosus dolichol phosphate are saturated, making this lipid not only the longest archaeal dolichol phosphate described to date but also the most highly saturated.  相似文献   

13.
The ability of metabolically diverse hyperthermophilic archaea to withstand high temperatures, low pHs, high sulfide concentrations, and the absence of carbon and energy sources was investigated. Close relatives of our study organisms, Methanocaldococcus jannaschii, Archaeoglobus profundus, Thermococcus fumicolans, and Pyrococcus sp. strain GB-D, are commonly found in hydrothermal vent chimney walls and hot sediments and possibly deeper in the subsurface, where highly dynamic hydrothermal flow patterns and steep chemical and temperature gradients provide an ever-changing mosaic of microhabitats. These organisms (with the possible exception of Pyrococcus strain GB-D) tolerated greater extremes of low pH, high sulfide concentration, and high temperature when actively growing and metabolizing than when starved of carbon sources and electron donors/acceptors. Therefore these organisms must be actively metabolizing in the hydrothermal vent chimneys, sediments, and subsurface in order to withstand at least 24 h of exposure to extremes of pH, sulfide, and temperature that occur in these environments.  相似文献   

14.
A method for rapid detection and identification of hyperthermophilic archaea of the family Thermococcaceae based on PCR amplification of 16S rRNA gene fragments with primers TcPc 173F (5'-TCCCCCATAGGYCTGRGGTACTGGAAGGTC-3') and TcPc 589R (5'-GCCGTGRGATTTCGCCAGGGACTTACGGGC-3') was developed and used for identification of new isolates.  相似文献   

15.
16.
Three new sulfur- or non-sulfur-dependent archaeal isolates, including a Pyrococcus strain, from Guaymas Basin hydrothermal vents (Gulf of California; depth, 2,010 m) were characterized and physiologically compared with four known hyperthermophiles, previously isolated from other vent sites, with an emphasis on growth and survival under the conditions particular to the natural habitat. Incubation under in situ pressure (200 atm [1 atm = 101.29 kPa]) did not increase the maximum growth temperature by more than 1°C for any of the organisms but did result in increases in growth rates of up to 15% at optimum growth temperatures. At in situ pressure, temperatures considerably higher than those limiting growth (i.e., > 105°C) were survived best by isolates with the highest maximum growth temperatures, but none of the organisms survived at temperatures of 150°C or higher for 5 min. Free oxygen was toxic to all isolates at growth range temperatures, but at ambient deep-sea temperature (3 to 4°C), the effect varied in different isolates, the non-sulfur-dependent isolate being the most oxygen tolerant. Hyperthermophiles could be isolated from refrigerated and oxygenated samples after 5 years of storage. Cu, Zn, and Pb ions were found to be toxic under nongrowth conditions (absence of organic substrate), with the non-sulfur-dependent isolate again being the most tolerant.  相似文献   

17.
The effect of different organic compounds (glucose, fructose, ribose, glycine, alanine, pyruvate, acetate, citrate, and yeast extract) as well as of the wastes of food production (molasses, stillage, sweet whey), on the growth of iron-oxidizing acidophilic microorganisms and biooxidation of ferrous iron was studied. Representatives of the microorganisms predominating in biohydrometallurgical processes—archaea of the family Ferroplasmaceae (A. aeolicum V1T, A. cupricumulans BH2T, Acidiplasma sp. MBA-1, Ferroplasma acidiphilum B-1) and bacteria of the genus Sulfobacillus (S. thermosulfidooxidans SH 10–1, S. thermotolerans Kr1T)—were the subjects of the study. All studied strains most actively grew and oxidized ferrous iron in the presence of yeast extract, which is probably due to the presence of a large number of different growth factors in its composition, while others substrates provided growth of microorganisms and ferrous iron oxidation.  相似文献   

18.
The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5′-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria.  相似文献   

19.
Pyrococcus furiosus was found to grow on chitin, adding this polysacharide to the inventory of carbohydrates utilized by this hyperthermophilic archaeon. Accordingly, two open reading frames (chiA [Pf1234] and chiB [Pf1233]) were identified in the genome of P. furiosus, which encodes chitinases with sequence similarity to proteins from the glycosyl hydrolase family 18 in less-thermophilic organisms. Both enzymes contain multiple domains that consist of at least one binding domain and one catalytic domain. ChiA (ca. 39 kDa) contains a putative signal peptide, as well as a binding domain (ChiABD), that is related to binding domains associated with several previously studied bacterial chitinases. chiB, separated by 37 nucleotides from chiA and in the same orientation, encodes a polypeptide with two different proline-threonine-rich linker regions (6 and 3 kDa) flanking a chitin-binding domain (ChiBBD [11 kDa]), followed by a catalytic domain (ChiBcat [35 kDa]). No apparent signal peptide is encoded within chiB. The two chitinases share little sequence homology to each other, except in the catalytic region, where both have the catalytic glutamic acid residue that is conserved in all family 18 bacterial chitinases. The genes encoding ChiA, without its signal peptide, and ChiB were cloned and expressed in Escherichia coli. ChiA exhibited no detectable activity toward chitooligomers smaller than chitotetraose, indicating that the enzyme is an endochitinase. Kinetic studies showed that ChiB followed Michaelis-Menten kinetics toward chitotriose, although substrate inhibition was observed for larger chitooligomers. Hydrolysis patterns on chitooligosaccharides indicated that ChiB is a chitobiosidase, processively cleaving off chitobiose from the nonreducing end of chitin or other chitooligomers. Synergistic activity was noted for the two chitinases on colloidal chitin, indicating that these two enzymes work together to recruit chitin-based substrates for P. furiosus growth. This was supported by the observed growth on chitin as the sole carbohydrate source in sulfur-free media.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号