首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin-A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wild-type littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin-A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.Key words: interneuron migration, cortical development, neuronal guidance cues, ephrin, Eph receptors, organotypic slice cultures  相似文献   

2.
The ephrin/Eph system plays a central role in neuronal circuit formation; however, its downstream effectors are poorly understood. Here we show that alpha-chimerin Rac GTPase-activating protein mediates ephrinB3/EphA4 forward signaling. We discovered a spontaneous mouse mutation, miffy (mfy), which results in a rabbit-like hopping gait, impaired corticospinal axon guidance, and abnormal spinal central pattern generators. Using positional cloning, transgene rescue, and gene targeting, we demonstrated that loss of alpha-chimerin leads to mfy phenotypes similar to those of EphA4(-/-) and ephrinB3(-/-) mice. alpha-chimerin interacts with EphA4 and, in response to ephrinB3/EphA4 signaling, inactivates Rac, which is a positive regulator of process outgrowth. Moreover, downregulation of alpha-chimerin suppresses ephrinB3-induced growth cone collapse in cultured neurons. Our findings indicate that ephrinB3/EphA4 signaling prevents growth cone extension in motor circuit formation via alpha-chimerin-induced inactivation of Rac. They also highlight the role of a Rho family GTPase-activating protein as a key mediator of ephrin/Eph signaling.  相似文献   

3.
On the basis of neuronal phenotypes and the mode of development of the mammalian forebrain, the cerebral cortex can be subdivided into deep versus superficial layers, and the striatum into patch versus matrix compartments. Interspecific chimeric Mus musculus----Mus caroli mice were used to determine the contribution of lineage to cellular position within these forebrain compartments. Statistical analysis revealed evidence of both spatial and compartmental lineage segregation. A significant difference in genotype ratio depending on chimeric specimen was observed between areas (regardless of compartment) that were separated by greater than 300 microns in the rostrocaudal plane. Differences were observed between early-born (striatal patch and deep cortex) versus late-born (striatal matrix and superficial cortex) neurons, but not between neurons of cortex as a whole versus neurons of striatum as a whole. The difference between early- and late-born neurons was primarily due to the difference between deep and superficial cortical neurons. On a finer scale of analysis, differences in genotype ratios were seen between radially aligned deep versus superficial cortical compartments, in both the neuronal and glial populations. This evidence is consistent with an early positional and compartmental segregation of forebrain progenitor cells.  相似文献   

4.
Davis MI  Puhl HL 《PloS one》2011,6(1):e16619
Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and overlaps with mu-opioid receptor immunoreactivity in the striatum. This pattern of expression is similar to Drd1, but not Drd2, dopamine receptor driven eGFP expression in structures targeted by medium spiny neuron afferents. Striosomal expression is strong developmentally where Nr4a1-eGFP expression overlaps with Drd1, TrkB, tyrosine hydroxylase and phospho-ERK, but not phospho-CREB, immunoreactivity in "dopamine islands". Exposure of adolescent mice to methylphenidate resulted in an increase in eGFP in both compartments in the dorsolateral striatum but eGFP expression remained brighter in the striosomes. To address the role of activity in Nr4a1-eGFP expression, primary striatal cultures were prepared from neonatal mice and treated with forskolin, BDNF, SKF-83822 or high extracellular potassium and eGFP was measured fluorometrically in lysates. eGFP was induced in both neurons and contaminating glia in response to forskolin but SKF-83822, brain derived neurotrophic factor and depolarization increased eGFP in neuronal-like cells selectively. High levels of eGFP were primarily associated with Drd1+ neurons in vitro detected by immunofluorescence; however ~15% of the brightly expressing cells contained punctate met-enkephalin immunoreactivity. The Nr4a1-GFP mouse strain will be a useful model for examining the connectivity, physiology, activity and development of the striosome system.  相似文献   

5.
Increasing evidence indicates that the Eph receptors and their ephrin ligands are involved in the regulation of interactions between neurons and astrocytes. Moreover, astrocytic ephrin‐A3 reverse signaling mediated by EphA4 receptors is necessary for controlling the abundance of glial glutamate transporters. However, the role of ephrin‐A3 reverse signaling in astrocytic function and neuronal death under ischemic conditions remains unclear. In the present study, we found that the EphA4 receptor and its ephrin‐A3 ligand, which were distributed in neurons and astrocytes, respectively, in the hippocampus showed a coincident up‐regulation of protein expression in the early stage of ischemia. Application of clustered EphA4 decreased the expressions of astrocytic glutamate transporters together with astrocytic glutamate uptake capacity through activating ephrin‐A3 reverse signaling. In consequence, neuronal loss was aggravated in the CA1 region of the hippocampus accompanied by impaired hippocampus‐dependent spatial memory when clustered EphA4 treatment was administered prior to transient global ischemia. These findings indicate that EphA4‐mediated ephrin‐A3 reverse signaling is a crucial mechanism for astrocytes to control glial glutamate transporters and prevent glutamate excitotoxicity under pathological conditions.

  相似文献   


6.
7.
Cortical interneurons are born in the proliferative zones of the ganglionic eminences in the subpallium and migrate to the developing cortex along well-defined tangential routes. The mechanisms regulating interneuron migration are not completely understood. Here we examine the role of class-A members of the Eph/ephrin system in directing the migration of interneurons. In situ hybridizations demonstrated that ephrin A3 is expressed in the developing striatum, an area that is strictly avoided by migrating cortical interneurons in vivo, which express the EphA4 receptor. We then examined interneuron migration in grafting experiments, where explants of the medial ganglionic eminence (MGE) from enhanced green fluorescent protein-expressing transgenic mice were homotopically grafted into host slices from wild-type littermate embryos. After blocking ephrin-A ligands, many interneurons invaded the striatal anlage. Moreover, stripe assay experiments revealed that ephrin-A3 acts as a repellent cue for neurons from the medial ganglionic eminence. Downregulation of the EphA4 receptor via siRNA transfection reduced the repulsive effect of ephrin-A3, indicating that EphA4 mediates at least in part the repulsive effect of ephrin A3 on these cells. Together, these results suggest that ephrin-A3 acts as a repulsive cue that restricts cortical interneurons from entering inappropriate regions and thus contributes to define the migratory route of cortical interneurons.  相似文献   

8.
9.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

10.
The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. In the present study we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrated that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical-shift changes observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4, binding. The peptides exhibit a long half-life in cell culture medium which, with their substantial binding affinity and selectivity for EphA4, makes them excellent research tools to modulate EphA4 function.  相似文献   

11.
Evidence is accumulating that Eph receptor tyrosine kinases and their ligands regulate cell migration and axonal guidance during development. It was previously found that one of the Eph receptors, EphA4, is transiently expressed in subsets of chick embryonic motor neurons. Here, the expression of EphA and ephrin-A subfamily members was further examined, and the dynamic patterns of expression in chick embryonic motor neurons found. EphA3, EphA4, ephrin-A2, and ephrin-A5 were also expressed in the connective tissues of limb muscles and EphA3 and EphA4 expressing motor neurons innervated EphA3 and EphA4 expressing limb muscles, respectively. These spatiotemporal expression patterns suggest that EphA and ephrin-A proteins play important roles in muscle patterning and motor axonal guidance.  相似文献   

12.
The topographically ordered retinocollicular projection is an excellent system for studying the mechanism of axon guidance. Gradients of EphA receptors in the retina and ephrin‐As in the superior colliculus (SC) pattern the anteroposterior axis of the retinocollicular map, but whether they are involved in map plasticity after injury is unknown. Partial damage to the caudal SC at birth creates a compressed, complete retinotopic map in the remaining SC without affecting visual response properties. Previously, we found that the gradient of ephrin‐A expression in compressed maps is steeper than normal, suggesting an instructive role in compression. Here we measured EphA5 mRNA and protein levels after caudal SC damage in order to test the hypothesis that changes in retinal EphA5 expression occur that are complementary to the changes in collicular ephrin‐A expression. We find that the nasotemporal gradient of EphA5 receptor expression steepens in the retina and overall expression levels change dynamically, especially in temporal retina, supporting the hypothesis. This change in receptor expression occurs after the change in ephrin‐A ligand expression. We propose that changes in the retinal EphA5 gradient guide recovery of the retinocollicular projection from early injury. This could occur directly through the change in EphA5 expression instructing retino‐SC map compression, or through ephrin‐A ligand signaling instructing a change in EphA5 receptor expression that in turn signals the retinocollicular map to compress. Understanding what molecular signals direct compensation for injury is essential to developing rehabilitative strategies and maximizing the potential for recovery.  相似文献   

13.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   

14.
The Eph family of receptor tyrosine kinases and their ligands the ephrins play an essential role in the targeting of retinal ganglion cell axons to topographically correct locations in the optic tectum during visual system development. The African claw-toed frog Xenopus laevis is a popular animal model for the study of retinotectal development because of its amenability to live imaging and electrophysiology. Its visual system undergoes protracted growth continuing beyond metamorphosis, yet little is known about ephrin and Eph expression patterns beyond stage 39 when retinal axons first arrive in the tectum. We used alkaline phosphatase fusion proteins of EphA3, ephrin-A5, EphB2, and ephrin-B1 as affinity probes to reveal the expression patterns of ephrin-As, EphAs, ephrin-Bs, and EphBs, respectively. Analysis of brains from stage 40 to adult frog revealed that ephrins and Eph receptors are expressed throughout development. As observed in other species, staining for ephrin-As displayed a high caudal to low rostral expression pattern across the tectum, roughly complementary to the expression of EphAs. In contrast with the prevailing model, EphBs were found to be expressed in the tectum in a high dorsal to low ventral gradient in young animals. In animals with induced binocular tectal innervation, ocular dominance bands of alternating input from the two eyes formed in the tectum; however, ephrin-A and EphA expression patterns were unmodulated and similar to those in normal frogs, confirming that the segregation of axons into eye-specific stripes is not the consequence of a respecification of molecular guidance cues in the tectum.  相似文献   

15.
Neuronal migration is a prerequisite event for the establishment of highly ordered neuronal circuits in the developing brain. Here, we report Pax6-dependent alignment of the olfactory cortex neurons in the developing telencephalon. These neurons were generated in the dorsal part of telencephalon, migrated ventrally and stopped at the pallium-subpallium boundary (PSB). In Pax6 mutant rat embryos, however, these neurons invaded the ventral part of the telencephalon by crossing the PSB. Ephrin A5, one of the ligands for EphA receptors, was specifically expressed in the ventral part of the telencephalon, and its expression level was markedly reduced in the Pax6 mutant. Gain- and loss-of-function studies of ephrin A5 indicated that ephrin A5 plays an important role in the alignment of olfactory cortex neurons at the PSB. Our results suggest that Pax6-regulated ephrin A5 acts as a repulsive molecule for olfactory cortex neurons in the developing telencephalon.  相似文献   

16.
The ephrin receptors EphA4 and EphB2 have been implicated in synaptogenesis and long-term potentiation in the cerebral cortex and hippocampus, where they are generally viewed as post-synaptic receptors. To determine the precise distribution of EphA4 and EphB2 in mature brain synapses, we used subcellular fractionation and electron microscopy to examine the adult mouse forebrain/midbrain. EphA4 and EphB2 were both enriched in microsomes and synaptosomes. In synaptosomes, they were present in the membrane and the synaptic vesicle fractions. While EphA4 was tightly associated with PSD-95-enriched post-synaptic density fractions, EphB2 was easily extracted with detergents. In contrast, both receptors were found in the pre-synaptic active zone fraction. By electron microscopy, EphA4 was mainly detected in axon terminals, whereas EphB2 was more frequently detected in large dendritic shafts, in the hippocampus and cerebral cortex. However, in the ventrobasal thalamus, EphB2 was detected most frequently in axon terminals and thin dendritic shafts. The localization of EphA4 and EphB2 in multiple compartments of neurons and synaptic junctions suggests that they interact with several distinct scaffolding proteins and play diverse roles at synapses.  相似文献   

17.
18.
Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin‐A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with β‐galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin‐A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon‐target interactions. In the presence of ephrin‐A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin‐A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin‐A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

19.
Establishment of limb innervation by motor neurons involves a series of hierarchical axon guidance decisions by which motor-neuron subtypes evaluate peripheral guidance cues and choose their axonal trajectory. Earlier work indicated that the pathway into the dorsal limb by lateral motor column (LMC[l]) axons requires the EphA4 receptor, which mediates repulsion elicited by ephrinAs expressed in ventral limb mesoderm. Here, we implicate glial-cell-line-derived neurotrophic factor (GDNF) and its receptor, Ret, in the same guidance decision. In Gdnf or Ret mutant mice, LMC(l) axons follow an aberrant ventral trajectory away from dorsal territory enriched in GDNF, showing that the GDNF/Ret system functions as an instructive guidance signal for motor axons. This phenotype is enhanced in mutant mice lacking Ret and EphA4. Thus, Ret and EphA4 signals cooperate to enforce the precision of the same binary choice in motor-axon guidance.  相似文献   

20.
Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF)-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs), but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号