首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible modes of binding for methyl-α-d-mannopyranoside, methyl-β-d-mannopyranoside, 2-O-methyl-α-d-mannopyranoside, methyl-2-O-methyl-α-d-mannopyranoside and methyl-α-d-N-acetylmannosamine to concanavalin A have been investigated using theoretical methods. All these sugars, except methyl-α-d-N-acetylmannosamine, reach the active site of concanavalin A with a highly restricted number of binding orientations. Present investigations suggest that the failure of methyl-α-d-N-acetylmannosamine to bind to concanavalin A is not so much due to steric factors as to repulsive electrostatic interactions. Methyl-2-O-methyl-α-d-mannopyranoside can bind to concanavalin A in one mode whereas the other sugars can bind in more than one mode. The high potency of methyl-α-d-mannopyranoside over methyl-β-d-mannopyranoside is mainly due to the possibility of hydrophobic interactions of the α-methoxy group with Leu(99) or Tyr(100) and also due to the possibility of formation of better and more hydrogen bonds with the protein. A comparison of these data with those for the d-glucopyranosides suggests that the change of the hydroxyl at the C-2 atom from equatorial to axial orientation increases the stereochemically allowed region as well as the possible binding modes. From these studies it is also suggested that the overall shape of the oligosaccharides rather than the terminal or internal mannose alone affects the binding potency of saccharides to concanavalin A.  相似文献   

2.
The X-ray diffraction patterns, 13C CP MAS NMR spectra, and powder X-ray diffraction analyses were obtained for selected p-nitrophenyl glycosides: α- and β-d-galactopyranosides (1 and 2), α- and β-d-glucopyranosides (3 and 4), and α- and β-d-mannopyranosides (5 and 6). In X-ray diffraction analysis of 1 and 2, characteristic shortening and lengthening of selected bonds were observed in the molecules of 1 due to anomeric effect, and in the crystal lattice of 1 and 2, hydrogen bonds of complex network were detected. In the crystal asymmetric unit of 1 there were two independent molecules, whereas in 2 there was one molecule. For 1 and 36 the number of resonances in solid-state 13C NMR spectra exceeded the number of the carbon atoms in the molecules, while for 2 there were distinct singlet resonances in its solid-state NMR spectrum. Furthermore, the powder X-ray diffraction (PXRD) performed for 13 and 5 revealed that 1, 3, and 5 existed as single polymorphs proving that the doublets observed in appropriate solid-state NMR spectra were connected with two non-equivalent molecules in the crystal asymmetric unit. On the other hand 2 existed as a mixture of two polymorphs, one of them was almost in agreement with the calculated pattern obtained from XRD (the difference in volumes of the unit cells), and the subsequent unknown polymorph existed in small amounts and therefore it was not observed in solid-state NMR measurements.  相似文献   

3.
An economically viable procedure for the isolation and purification of d-mannose from palm kernel was developed in this research. The palm kernel was catalytically hydrolyzed with sulfuric acid at 100 °C and then fermented by mannan-degrading enzymes. The solution after fermentation underwent filtration in a silica gel column, desalination by ion-exchange resin, and crystallization in ethanol to produce pure d-mannose in a total yield of 48.4% (based on the weight of the palm kernel). Different enzymes were investigated, and the results indicated that endo-β-mannanase was the best enzyme to promote the hydrolysis of the oligosaccharides isolated from the palm kernel. The pure d-mannose sample was characterized by FTIR, 1H NMR, and 13C NMR spectra.  相似文献   

4.
5.
Starting from 3β-hydroxy-17-oxo-16,17-secoandrost-5-ene-16-nitrile (1), the new 16,17-secoandrostane derivatives 49 were synthesized. On the other hand, 3β-hydroxy-17-oxa-d-homoandrost-5-ene-16-one (10) yielded the new d-homo derivatives 12, 13 and 15. In vitro antiproliferative activity of selected compounds against three tumor cell lines (human breast adenocarcinoma ER+, MCF-7, human breast adenocarcinoma ER−, MDA-MB-231, prostate cancer AR−, PC-3, and normal fetal lung fibroblasts, MRC-5) was evaluated. Compounds 3 and 12 showed strong antiproliferative activity against PC-3 cells, the IC50 values being 2 μM and 0.55 μM, respectively. Compounds 6 (10 μM) and 14 (9 μM) showed moderate activity against MDA-MB-231 cells. The synthesized compounds 13, 58, 10 and 1215 were not toxic to normal fetal lung fibroblasts cells, MRC-5.  相似文献   

6.
7.
8.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

9.
Modified d-glucose and d-mannose analogs are potentially clinically useful metabolic inhibitors. Biological evaluation of 2-deoxy-2-halo analogs has been impaired by limited availability and lack of efficient methods for their preparation. We have developed practical synthetic approaches to 2-deoxy-2-fluoro-, 2-chloro-2-deoxy-, 2-bromo-2-deoxy-, and 2-deoxy-2-iodo derivatives of d-glucose and d-mannose that exploit electrophilic addition reactions to a commercially available 3,4,6-tri-O-acetyl-d-glucal.  相似文献   

10.
An enzyme isolated from Agrobacterium radiobacter was shown to catalyse the following reaction: H2O + N-carbamoyl-d-amino acidd-amino acid + NH3 + CO2 Some properties of this new enzyme, N-carbamoyl-d-amino acid amidohydrolase, are presented in this paper. The potential application of this enzyme for the preparation of some d-amino acids used as pharmaceutical intermediates is discussed.  相似文献   

11.
d-glycero-d-manno-Heptopyranose 7-phosphate—an intermediate in the biosynthesis of nucleotide-activated heptoses—has been prepared in good overall yield from benzyl 5,6-dideoxy-2,3-O-isopropylidene-α-d-lyxo-(Z)-hept-5-enofuranoside by a short-step synthesis. Phosphitylation using the phosphoramidite procedure followed by in situ oxidation afforded the corresponding 7-O-phosphotriester derivative in high yield. Subsequent osmylation proceeded in good diastereoselectivity (4:1) to furnish the d-glycero-d-manno-configured derivative, which was separated from the l-glycero-l-gulo-isomer by chromatography. Hydrogenolysis led to simultaneous removal of the benzyl and isopropylidene groups and afforded the target compound in high yield, which serves as a substrate of bacterial heptose 7-phosphate kinases.  相似文献   

12.
Several bases have been evaluated as catalysts for the production of d-psicose (d-ribo-2-hexulose) from d-fructose. The hexose levels in the isomerized mixtures were quantified by l.c. on a μBondapak/Carbohydrate column. The most effective and convenient base was found to be pyridine, and mixtures produced by boiling concentrated solutions (1 g/mL) of d-fructose in pyridine under reflux contained 12.4% of psicose, lesser proportions of glucose and mannose, and 25.8% of the starting material. Following removal of solvent, fermentation with bakers' yeast removed most hexoses other than d-psicose, which was isolated by chromatography on cellulose. The entire procedure required three days, and d-psicose was obtained in gram quantities in 6.8% of the theoretical yield.  相似文献   

13.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

14.
An enzyme has been discovered in Escherichia coli that catalyzes the conversion of the triphosphate ester of 2-amino-4-hydroxy-6-(d-erythro-1′,2′,3′-trihydroxypropyl)-7,8-dihydropteridine, (i.e. d-erythro-dihydroneopterin triphosphate) to an epimer of this compound, l-threo-dihydroneopterin triphophate. The enzyme, which is here named “d-erythro-dihydroneopterin triphosphate 2′-epimerase,” needs a divalent cation (Mg2+ or Mn2+ is most effective) for maximal activity. Its molecular weight is estimated at 87 000–89 000. Little or no activity can be detected if either the monophosphate or the phosphate-free form of the substrate is incubated with the enzyme. Evidence is presented to establish that all three phosphate residues of the substrate are retained in the product and that the product is of the l-threo configuration.  相似文献   

15.
The Escherichia coli d-xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) gene, xylA, has been cloned on various E. coli plasmids. However, it has been found that high levels of overproduction of the d-xylose isomerase, the protein product of the xylA gene, cannot be accomplished by cloning the intact gene on high copy-number plasmids alone. This is believed to be due to the fact that the expression of the gene through its natural promoter is highly regulated in E. coli. In order to overcome this, the xylA structural gene has been fused with other strong promoters such as tac and lac, resulting in the construction of a number of fused genes. Analysis of the E. coli transformants containing the fused genes, cloned on high copy-number plasmids, indicated that a 20-fold overproduction of the enzyme can now be obtained. It is expected that overproduction of the enzyme in E. coli can still be substantially improved through additional manipulation with recombinant DNA techniques.  相似文献   

16.
d-malate replaced l-malate in supporting both photosynthetic (anaerobic, light) and heterotrophic (aerobic, dark) growth of Rhodopseudomonas capsulata. Growth rates and cell yields were nearly equivalent with both enantiomorphs. Addition of glucose to malate culture media increased the growth rate and doubled the cell yield of heterotrophic cultures, but had little effect on photosynthetic cultures. Aerobically-grown cells showed a higher level of substrate-dependent oxygen uptake with l-malate than with d-malate. This preference for l-malate occured even in cells grown on d-malate. No malic racemase activity was detected in extracts of heterotrophically- or photosynthetically-grown cells.  相似文献   

17.
A general and flexible synthetic approach to biologically important 5,6-unsaturated C18-phytosphingosines was developed via olefin cross-metathesis employing truncated C6-phytosphingosines as the key intermediates. These were efficiently prepared in high yields by zinc-mediated reductive opening of methyl 2-amino-2-deoxy-β-hexopyranosides.

  相似文献   

18.
Failure of human lymphoid cell lines to grow in d-valine-substituted media is associated with the lack of d-amino acid oxidase activity in these cells.  相似文献   

19.
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.  相似文献   

20.
Polyaniline (PANI) is a water-insoluble polymer that has been used as support for enzyme immobilization due to its desirable characteristics, such as ease of preparation, high synthesis yield, high stability to temperature and pH, and resistance to microbial attack. In this work an investigation was carried out to determine the best conditions to immobilize d-hydantoinase (E.C. 3.5.2.2) in this support. As result, a simple and fast methodology for d-hydantoinase immobilization in PANI is described. 100% of proteins were immobilized on the support in concentrations up to 2 mg solid/ml. Higher concentrations led to a lower protein percentage immobilized. After five reaction cycles about a half of d-hydantoinase initial activity was conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号