首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An iron chelate, ferric nitrilotriacetate (Fe3+-NTA), is nephrotoxic and also carcinogenic to the kidney in experimental animals. Iron-promoted lipid peroxidation in the proximal tubules is thought to be responsible for the pathologic process. In the present study, iron-promoted lipid peroxidation, with thiobarbituric acid (TBA) formation as an indication, in the tubular surface was simulated in vitro using rat kidney brush border membrane vesicles and the results were compared with those using linoleate micelles and rat liver microsomal lipid liposomes. Addition of ascorbate, cysteine, or dithiothreitol to the Fe3+-NTA solution resulted in consumption of dissolved oxygen and promoted the lipid peroxidation in the micelles and in the liposomes. In contrast, addition of glutathione to the Fe3+-NTA solution caused only sluggish oxygen consumption and far less peroxidation in these lipid systems. When the brush border membrane vesicles were used for the peroxidation substrate, Fe3+-NTA and glutathione could promote TBA formation at a rate comparable to that elicited by Fe3+-NTA with cysteine or dithiothreitol. Acivicin, a gamma-glutamyl transpeptidase inhibitor, suppressed the peroxidation of the brush border membrane vesicles promoted by Fe3+-NTA and glutathione. These results suggest the following mechanism of proximal tubular cell lipid peroxidation promoted by Fe-NTA: Fe3+-NTA filtered through glomeruli is rapidly reduced by cysteine and Fe2+-NTA starts lipid peroxidation at the site, leading to proximal tubular necrosis. Cysteine is amply supplied by the decomposition of glutathione within the lumen by the action of gamma-glutamyl transpeptidase and dipeptidase situated at the proximal tubular brush border membrane.  相似文献   

2.
This study examined some of the variables determining the efficiency of lipid peroxidation in egg yolk phosphatidylcholine liposomes and in microsomes exposed to enzymatically-generated superoxide radicals. The initiation of peroxidation required the presence of preformed lipid peroxides and a chelated metal catalyst. Comparison of the relative effectiveness of four iron chelating agents showed that the chelate must bind to the membrane by coulombic attraction between the charged membrane and a chelate carrying an opposite net charge. Of the chelates tested, only the carcinogenic ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) was an effective catalyst of oxidation of all membranes, whether carrying a net charge, or not. We postulate that the unique catalytic capacity of the ferric nitrilotriacetate [corrected] (Fe(3+)-NTA) can be explained by its existence in two forms at neutral pH, each binding to oppositely charged membranes and initiating their peroxidation. This gives the complex the unique ability to bind to any membrane, which may be a factor in its carcinogenicity.  相似文献   

3.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

4.
Oxidation of ferrous iron during peroxidation of lipid substrates   总被引:3,自引:0,他引:3  
Oxidation of Fe2+ in solution was dependent upon medium composition and the presence of lipid. The complete oxidation of Fe2+ in 0.9% saline was markedly accelerated in the presence of phosphate or EDTA and the ferrous oxidation product formed was readily recoverable as Fe2+ by ascorbate reduction. In contrast, in the presence of either brain synaptosomal membranes, phospholipid liposomes, fatty acid micelles or H2O2, less than 50% of the Fe2+ oxidized during an incubation could be recovered as Fe2+ via reduction with ascorbate. In the presence of unsaturated lipid, oxidation of Fe2+ was associated with peroxidation of lipid, as assessed by the uptake of O2 and formation of thiobarbituric acid-reactive products during incubations. Although relatively little Fe2+ oxidation or lipid peroxidation occurred in saline with synaptosomes or linoleic acid micelles during an incubation with Fe2+ alone, significant Fe2+ oxidation and lipid peroxidation occurred in incubations containing a 1:1 ratio of Fe2+ and Fe3+. Extensive Fe2+ oxidation and lipid peroxidation also occurred with Fe2+ alone in saline incubations with either linolenic or arachidonic acid acid micelles or liposomes prepared from dilinoleoylphosphatidylcholine. While a 1:1 ratio of Fe2+ and Fe3+ enhanced thiobarbituric acid-reactive product formation in incubations containing linolenic or arachidonic micelles, it reduced the rate of O2 consumption as compared with Fe2+ alone. The results demonstrate that oxidation of Fe2+ in incubations containing lipid substrates is linked to and accelerated by peroxidation of those substrates. Furthermore, the results suggest that oxidation of Fe2+ in the presence of lipid or H2O2 creates forms of iron which differ from those formed during simple Fe2+ autoxidation.  相似文献   

5.
Experiments were performed which illustrate the various ways EDTA can influence lipid peroxidation. Either detergent-dispersed linoleate, or liposomes made from extracted microsomal phospholipids were utilized as substrates for peroxidation. Peroxidation was accomplished using Fe2+ or Fe3+. In systems utilizing Fe2+, EDTA chelation facilitated Fe2+ autoxidation which in turn caused peroxidation of detergent-dispersed linoleate. Peroxidation was not initiated during EDTA-Fe2+ autoxidation when the substrate lipids were in a liposomal configuration. Systems utilizing Fe3+ required an enzyme (either xanthine oxidase or NADPH-cytochrome P450 reductase) to reduce the iron for peroxidative activity. EDTA chelation of Fe3+ enhanced the xanthine oxidase and NADPH-cytochrome P450 reductase-catalyzed peroxidation of detergent-dispersed linoleate, presumably by facilitating the reduction of Fe3+. Catalase and mannitol inhibited both EDTA-Fe2+- and EDTA-Fe3+-dependent lipid peroxidation. EDTA-Fe3+ was not capable of initiating peroxidation of phospholipid liposomes following enzymatic reduction by either enzyme, but ADP-chelated iron effectively initiated liposomal peroxidation in similar systems. With xanthine oxidase-catalyzed peroxidation of liposomes with ADP-Fe3+, the inclusion of EDTA-Fe3+ caused a modest enhancement of activity. EDTA-Fe3+ greatly stimulated NADPH-cytochrome P450 reductase-catalyzed peroxidation of liposomes with ADP-Fe3+. In contrast, the addition of EDTA, rather than EDTA-Fe3+ inhibited the liposomal peroxidation catalyzed by either enzyme with ADP-Fe3+ when the EDTA concentration exceeded the concentration of Fe3+.  相似文献   

6.
Ferric nitrilotriacetate, which causes in vivo organ injury, induced lipid peroxidation and cell death in Ehrlich ascites tumor cells in vitro. The process was inhibited by butylated hydroxyanisole and enhanced by vitamin C and linolenic acid, indicating a close relationship between cytotoxicity and the lipid peroxidizing ability of Fe3+ NTA. The cytotoxicity was suppressed by glucose and a temperature below 20 degrees C. Lipid peroxidation of Fe3+ NTA-treated cells was greater at 0 degree C than at 37 degrees C, contrary to results with Fe3+ NTA-treated plasma membranes of Ehrlich ascites tumor cell. These results suggested that metabolism and membrane fluidity are important factors in the expression of the Fe3+ NTA-induced cytotoxicity. H2O2 showed a lower cytotoxicity than did Fe3+ NTA but a greater lipid peroxidizing ability. H2O2 appeared to damage the cells less, and was quenched rapidly by cellular metabolism unlike Fe3+ NTA. In transferrin-free medium, Ehrlich ascites tumor cell readily incorporated Fe3+ NTA, and iron uptake was greater than NTA-uptake in Fe3+ NTA-treated cells, suggesting that Ehrlich ascites tumor cell incorporated iron from Fe3+NTA and metabolized it into an inert form such as ferritin.  相似文献   

7.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

8.
Antioxidant action of Mn2+ on radical-mediated lipid peroxidation without added iron in microsomal lipid liposomes and on iron-supported lipid peroxidation in phospholipid liposomes or in microsomes was investigated. High concentrations of Mn2+ above 50 microM inhibited 2,2'-azobis (2-amidinopropane) (ABAP)-supported lipid peroxidation without added iron at the early stage, while upon prolonged incubation, malondialdehyde production was rather enhanced as compared with the control in the absence of Mn2+. However, in a lipid-soluble radical initiator, 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN)-supported lipid peroxidation of methyl linoleate in methanol Mn2+ apparently did not scavenge lipid radicals and lipid peroxyl radicals, contrary to a previous report. At concentrations lower than 5 microM, Mn2+ competitively inhibited Fe(2+)-pyrophosphate-supported lipid peroxidation in liposomes consisting of phosphatidylcholine with arachidonic acid at the beta-position and phosphatidylserine dipalmitoyl, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-supported lipid peroxidation in the presence of iron complex in microsomes. Iron reduction responsible for lipid peroxidation in microsomes was not influenced by Mn2+.  相似文献   

9.
Co2+ inhibited nonenzymatic iron chelate-dependent lipid peroxidation in dispersed lipids, such as ascorbate-supported lipid peroxidation, but not iron-independent lipid peroxidation. Histidine partially abolished the Co2+ inhibition of the iron-dependent lipid peroxidation. The affinity of iron for phosphatidylcholine liposomes in Fe(2+)-PPi-supported systems was enhanced by the addition of an anionic lipid, phosphatidylserine, and Co2+ competitively inhibited the peroxidation, while the inhibiting ability of Co2+ as well as the peroxidizing ability of Fe(2+)-PPi on liposomes to which other phospholipids, phosphatidylethanolamine, or phosphatidylinositol had been added was reduced. Co2+ inhibited microsomal NADPH-supported lipid peroxidation monitored in terms of malondialdehyde production and the peroxidation monitored in terms of oxygen consumption. The inhibitory action of Co2+ was not associated with iron reduction or NADPH oxidation in microsomes, suggesting that Co2+ does not affect the microsomal electron transport system responsible for lipid peroxidation. Fe(2+)-PPi-supported peroxidation of microsomal lipid liposomes was markedly inhibited by Co2+.  相似文献   

10.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

11.
Reduction of iron is important in promoting xenobiotic-enhanced, microsomal lipid peroxidation, yet there is little evidence that Fe3+ chelates that promote lipid peroxidation can be reduced by the microsomal system. We have shown that rat liver microsomes catalyse NADPH-dependent reduction of Fe3+ without chelator, as well as Fe3+(ADP), Fe3+(ATP), Fe3+(citrate), Fe3+(EDTA), and ferrioxamine in N2. The NADPH oxidation that accompanied Fe3+ reduction was inhibited by CO for all chelates, except Fe3+ (EDTA). This implies that, except for Fe3+ (EDTA), cytochrome P450 was involved in reduction of the complexes. Adriamycin, paraquat, and anthraquinone 2-sulfonate (AQS) enhanced reduction of all the Fe3+ chelates, whereas menadione enhanced reduction only of Fe3+(ADP) and Fe3+(citrate). All the compounds enhanced oxidation of NADPH in the presence or absence of iron. This was not inhibited by CO, and the results are compatible with Fe3+ reduction occurring via the xenobiotic radicals produced by cytochrome P450 reductase. Microsomal reduction of the xenobiotics, except menadione, enabled the reduction and release of iron from ferritin. Fe3+ chelate reduction, both with and without xenobiotic, was inhibited by O2, although it still proceeded in air at 10-20% of the rate in N2. Iron-dependent lipid peroxidation was promoted by ADP and ATP, inhibited 50% by citrate, and completely inhibited by EDTA and desferrioxamine. Of the xenobiotics, only Adriamycin enhanced microsomal lipid peroxidation. These results indicate that the effects of chelators and xenobiotics on Fe3+ reduction do not correlate with lipid peroxidation and, although reduction is necessary, there must be other factors involved.  相似文献   

12.
Thiol-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
Initiation of lipid peroxidation in liposomes by cysteine, glutathione, or dithiothreitol required iron, and was not inhibited by superoxide dismutase. The absence of superoxide involvement in thiol autoxidation was confirmed by the inability of superoxide dismutase to inhibit thiol reduction of cytochrome c. Furthermore, the rate of cytochrome c reduction by thiols was not decreased under anaerobic conditions. We suggest that lipid peroxidation initiated by thiols and iron occurs via direct reduction of iron. Control of cellular thiol autoxidation, and reactions occurring as a consequence, such as lipid peroxidation, must therefore involve chelation of transition metals to control their redox reactions.  相似文献   

13.
The effect of zinc on FeSO4/ascorbic acid-induced lipid peroxidation was measured by the thiobarbituric acid assay in various lipid systems including small unilamellar liposomes prepared from egg phosphatidylcholine (EPC), ionic micelles prepared from arachidonic acid (C20:4), non-ionic monocomponent micelles prepared from EPC-derived, methylated fatty acids, and an eicosatetrene emulsion. With the exception of C20:4 micelles, zinc inhibited lipid peroxidation in each of the above systems in a similar dose-related fashion, with 0.5 mM zinc having maximal effect. Gas-chromatographic fatty acid analysis too indicated a protective effect of zinc against FeCl3-induced lipid peroxidation in soybean PC vesicles, which do not contain C20:4 moieties. These findings, in particular the inhibition of lipid peroxidation in eicosatetrene emulsion, suggest that the presence of uncharged polar head groups, or packing of lipid molecules into ordered self-assemblages (membranes and micelles) have no critical influence on the antioxidant effect of zinc. The results with Fe2+ are compatible with the concept that zinc interferes with the formation of Fe2+-oxygen-enoic complexes. This mechanism, however, cannot account for the inhibition by zinc of the Fe#+-induced lipid peroxidation, suggesting the involvement of other types of zinc effects in these systems.  相似文献   

14.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

15.
Since male A/J mice are much more susceptible to both acute and subacute nephrotoxicity and the carcinogenic effect of ferric nitrilotriacetate than female mice, sex differences in the lipid peroxidation level after ferric nitrilotriacetate use were examined. The effects of orchiectomy and testosterone were also investigated. Male and female A/J mice were given a single intraperitoneal injection of ferric nitrilotriacetate (3 mg of iron/kg of body weight) and then thiobarbituric acid reactivity was determined in the liver and the kidney. Only male mice showed high thiobarbituric acid reactivity after 30 min, with the kidney showing higher activity than the liver. Castrated male mice showed a reduction in thiobarbituric acid reactivity, whereas testosterone-pretreated castrated male or testosterone-pretreated female mice showed increased thiobarbituric acid reactivity. In addition, daily intraperitoneal injections of ferric nitrilotriacetate resulted in the death of all normal male mice within 6 days, whereas all female and castrated male mice survived 3 months of treatment. Thus, male and female mice showed differences in ferric nitrilotriacetate-induced toxicity as reflected in the degree of lipid peroxidation and mortality.  相似文献   

16.
A model lipid peroxidation system dependent upon the hydroxyl radical, generated by Fenton's reagent, was compared to another model system dependent upon the enzymatic generation of superoxide by xanthine oxidase. Peroxidation was studied in detergent-dispersed linoleic acid and in phospholipid liposomes. Hydroxyl radical generation by Fenton's reagent (FeCl2 + H2O2) in the presence of phospholipid liposomes resulted in lipid peroxidation as evidenced by malondialdehyde and lipid hydroperoxide formation. Catalase, mannitol, and Tris-Cl were capable of inhibiting activity. The addition of EDTA resulted in complete inhibition of activity when the concentration of EDTA exceeded the concentration of Fe2+. The addition of ADP resulted in slight inhibition of activity, however, the activity was less sensitive to inhibition by mannitol. At an ADP to Fe2+ molar ratio of 10 to 1, 10 mm mannitol caused 25% inhibition of activity. Lipid peroxidation dependent on the enzymatic generation of superoxide by xanthine oxidase was studied in liposomes and in detergent-dispersed linoleate. No activity was observed in the absence of added iron. Activity and the apparent mechanism of initiation was dependent upon iron chelation. The addition of EDTA-chelated iron to the detergent-dispersed linoleate system resulted in lipid peroxidation as evidenced by diene conjugation. This activity was inhibited by catalase and hydroxyl radical trapping agents. In contrast, no activity was observed with phospholipid liposomes when iron was chelated with EDTA. The peroxidation of liposomes required ADP-chelated iron and activity was stimulated upon the addition of EDTA-chelated iron. The peroxidation of detergent-dispersed linoleate was also enhanced by ADP-chelated iron. Again, this peroxidation in the presence of ADP-chelated iron was not sensitive to catalase or hydroxyl radical trapping agents. It is proposed that initiation of superoxide-dependent lipid peroxidation in the presence of EDTA-chelated iron occurs via the hydroxyl radical. However, in the presence of ADP-chelated iron, the participation of the free hydroxyl radical is minimal.  相似文献   

17.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

18.
To obtain information on the role of iron-catalyzed lipid peroxidation in the presence of the small amount of lipid peroxide in deterioration of biological membranes, we examined factors affecting peroxidation of fatty acids in charged micelles. Peroxidation of linoleic acid (LA) was catalyzed by Fe2+ via reductive cleavage of linoleic acid hydroperoxide (LOOH) in negatively charged sodium dodecyl sulfate micelles, but not in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles. However, this Fe2(+)-induced, LOOH-dependent lipid peroxidation could be induced in TTAB micelles in the presence of a negatively charged iron chelator, nitrilotriacetic acid (NTA). The linoleic acid alkoxy radical (LO.) generated by the LOOH-dependent Fenton reaction was also trapped by N-t-butyl-alpha-phenylnitrone at the surface of TTAB micelles in the presence of NTA, but not in its absence. The degradation rates of two spin probes, N-oxyl-4,4'-dimethyloxazolidine derivatives of stearic acid (5-NS and 16-NS), were investigated to determine the site of production of radicals formed during LOOH-dependent lipid peroxidation. The rate of consumption of 16-NS during the LOOH-dependent Fenton-like reaction was higher in TTAB micelles containing LA than in those containing lauric acid (LauA), although the rates of formation of LO. in the two types of fatty acid micelles were similar. The rates of 5-NS consumption in LA and LauA micelles were almost the same and were as low as that of 16-NS consumption in LauA micelles. 16-NS was more inhibitory than 5-NS of LOOH-dependent lipid peroxidation, and this inhibition was associated with its higher consumption of 16-NS than of 5-NS. alpha-Tocopherol inhibited NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation in TTAB micelles, and was oxidized during this inhibition process. The rate and amount of alpha-tocopherol oxidized by the LOOH-dependent Fenton reaction were higher in LA micelles than in LauA micelles. alpha-Tocopherol inhibited the consumption of 16-NS during NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation more effectively than that of 5-NS. The distribution of the chromanol moiety of alpha-tocopherol was studied by the fluorescence quenching method. There was no difference between Stern-Volmer plots of the quenchings of alpha-tocopherol fluorescence by 5-NS and 16-NS. From these results, we discuss the mechanism of induction of LOOH-dependent peroxidation of LA and the mechanism of the antioxidant effects of alpha-tocopherol on it from the viewpoint of site-specific reaction.  相似文献   

19.
Iron and aluminum complexes of nitrilotriacetic acid cause severe nephrotoxicity in Wistar rats. In addition, a high incidence of renal cell carcinoma is seen in ferric nitrilotriacetate-treated animals. The present study was performed to see if lipid peroxidation is involved in ferric nitrilotriacetate toxicity. Ferric nitrilotriacetate had more bleomycin-detectable 'free' iron than any ferric salt, while iron complexed with desferrioxamine or ferric chondroitin sulfate had none. The toxicity of ferric nitrilotriacetate in vivo was more pronounced in vitamin E-deficient rats. A thiobarbituric acid-reactive substance was present in the kidneys of vitamin E-deficient rats in amounts markedly elevated compared to vitamin E-sufficient, or vitamin E-supplemented rats. Non-complexed nitrilotriacetate or aluminum nitrilotriacetate did not produce any thiobarbituric acid-reactive substance in vitamin E-sufficient rats died by the 58th day of administration. We suggest that the iron-stimulated production of free radicals leading to lipid peroxidation is the major cause of ferric nitrilotriacetate-mediated renal toxicity. Vitamin E, a known scavenger of free radicals, is effective in protecting against this iron-induced toxicity.  相似文献   

20.
Oxidation of linoleic acid (LA) in tetradecyltrimethylammonium bromide micelles was induced by ferrous- and ferric-chelates in the presence of linoleic acid hydroperoxide (LOOH). Ferrous-chelates also induced lipid peroxidation in the presence of H2O2, but ferric-chelates did not, thought they could generate OH-radicals in the presence of H2O2, resulting in deoxyribose degradation. Of the chelators tested, nitrilotriacetic acid (NTA) chelated with iron showed the highest activity for induction of H2O2- and LOOH-dependent lipid peroxidations and H2O2-dependent deoxyribose degradation. NTA with ferrous ion, but not with ferric ion, also initiated oxidation of LA after a short lag period in the absence of peroxides such as H2O2 and LOOH, but other chelators with ferrous ion did not. The peroxide-independent lipid peroxidation and associated oxidation of ferrous-NTA to ferric-NTA progressed in two steps: an induction step in a lag period and then a propagation step. Ferrous ion complexed with NTA was autoxidized pH-dependently and synchronously with oxygen uptake. The rates of both reactions increased with increase of pH, but were not related to the length of the lag period, which was also dependent on pH, and was shortest at pH 4.2. The EPR spectrum of the ferric-NTA complex prepared directly from ferric salt was different from that of the complex prepared from ferrous salt, confirming that some ferric-type active oxygen participated in induction of peroxide-independent lipid peroxidation. From these results, we propose a possible mechanism of lipid peroxidation induced by ferrous-NTA without peroxides. The finding that iron-NTA had the highest activity for induction of the oxidations of LA and deoxyribose is discussed in relation to the carcinogenic and nephrotoxic effects of this chelating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号