首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

2.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

3.
The effects of photosynthetic photon flux density (PPFD) on antioxidant metabolism and photosynthetic properties in leaves during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets were investigated. In vitro-propagated plantlets were acclimatized at either 50 (Low-light = LL) or 300 (High-light = HL) μmol m−2s−1 photosynthetic PPFD for 4 weeks under controlled conditions. Increases in chlorophyll (Chl) a, b and carotenoid levels were observed in plantlets acclimatized at both light intensities. At transplantation, micropropagated plantlets were not photosynthetically active, but the net photosynthetic rate increased in newly formed leaves over time during acclimatization. The observed differences in pigment contents and photosynthetic rates suggested adaptation of plantlets from heterotrophic to autotrophic mode of nutrition during acclimatization. Changes in activities of antioxidant enzymes were also observed during acclimatization. Superoxide dismutase activity increased in plantlets acclimatized at HL intensities. Likewise, changes in activity of catalase and ascorbate peroxidase were also detected. These observed changes reflected the ability of plants in developing an antioxidant enzymatic defense system aiding in survival against oxidative stress and in reducing release of free radicals.  相似文献   

4.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

5.
HERPPICH  W.B. 《Photosynthetica》1998,34(1):1-12
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides.  相似文献   

6.
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Loss of chlorophyll (Chl) and carotenoids (Car) of leaves and changes in Chl fluorescence emission and polarisation, malondialdehyde (MDA) accumulation, and 2,6-dichlorophenol indophenol (DCPIP) photoreduction in chloroplasts of wheat seedlings grown under different irradiance and subsequently exposed to high irradiance stress (HIS; 250 W m–2) were studied in mature and senescent primary wheat leaves. Faster rate of pigment loss was observed in leaves of moderate irradiance (MI; 15 W m–2) grown plants, compared to high irradiance (HI-1 and HI-2; 30 and 45 W m–2) ones when exposed to HIS. A relatively lower loss of Car in the plants grown in HI-1 and HI-2 exposed to HIS suggests HI adaptation of these seedlings. The slower rate of increase in the ratio of Chl fluorescence emission (F685/F735) also may suggest photoprotective strategy of HI grown seedlings. There was a positive correlation between MDA accumulation and Chl fluorescence polarisation. The DCPIP photoreduction activity in chloroplasts isolated from HI-1 and HI-2 grown plants exposed to HIS showed slower loss of electron transport activity compared to MI grown plants. These observations suggest that plants grown under higher irradiance have capacity to manage the excess quanta better than those grown under lower irradiance.  相似文献   

8.
The ability of photosynthesis and CAM to acclimate to low (220 µmol m?2 s?1; LL) and relatively high (550 µmol m?2 s?1; HL) photosynthetic photon flux densities (PPFD) was investigated in the CAM-cycling species Delosperma tradescantioides by means of CO2 gas exchange and chlorophyll fluorescence analysis. Furthermore, the influence of short-term drought on malic acid accumulation and the activity of photosystem II (PSII) was studied to assess the possible interactions between drought and the prevailing PPFD in this species. HL plants showed features of sun versus shade acclimation relative to LL plants. Nocturnal malic acid accumulation (Δ-malate) and leaf water content also tended to be higher in HL plants. Irrespective of the PPFD during growth, the weak Δ-malate doubled within 3 days of drought. Despite largely restricted CO2 uptake, photosynthetic activity as estimated from fluorescence analysis declined only ca 5%. After 7 days of drought, when plants showed CAM-idling and Δ-malate had decreased again, potential carbon assimilation was still ca 84% of that in well-watered plants and remained relatively constant throughout the day. Decarboxylation of malic acid accounted for ca 23% of potential assimilation assuming total oxidation of a maximum portion of this organic acid. Drought did not affect predawn maximum photochemical efficiency (Fv/Fm). Nonphotochemical quenching (qN) increased (24%) in response to desiccation and resulted in a more or less constant reduction state of PSII. This increase in qN resulted mainly from the change in its fast-relaxing component (qNF), while the slow component (qNS) was significant only at or above saturating PPFD in both HL and LL plants. The photon response characteristics of PSII, which differed between LL and HL plants, were unaffected by short-term drought. Photon harvesting and photon use were always adjusted to guarantee a low reduction state of PSII. Results suggest that in both LL and HL plants CAM-cycling may help to stabilize photosynthesis but to a large extent by other means than simply providing internally derived CO2.  相似文献   

9.
Li  X.-G.  Meng  Q.-W.  Jiang  G.-Q.  Zou  Q. 《Photosynthetica》2003,41(2):259-265
The photoprotection of energy dissipation and water-water cycle were investigated by comparing chilling sensitivity of photosystems 2 (PS2) and 1 (PS1) in two chilling-sensitive plants, cucumber and sweet pepper, upon exposure to 4 °C under low irradiance (100 μmol m−2 s−1) for 6 h. During chilling stress, the maximum photochemical efficiency of PS2 (Fv/Fm) decreased only slightly in both plants, but the oxidisable P700 decreased markedly, which indicated that PS1 was more sensitive to chilling treatment under low irradiance than PS2. Sweet pepper leaves had lower Fv/Fm, higher non-photochemical quenching (NPQ), and higher oxidisable P700 during chilling stress. Activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in cucumber leaves was higher, but APX activity decreased apparently compared to that at room temperature. The productions of active oxygen species (H2O2, O2 ) increased in both plants, faster in cucumber leaves than in sweet pepper leaves. In sweet pepper leaves, a stronger de-epoxidation of the xanthophyll cycle pigments, a higher NPQ could act as a major protective mechanism to reduce the formation of active oxygen species during stress. Thus sensitivity of both plants to chilling under low irradiance was dominated by the protective mechanisms between PS1 and PS2, especially the energy dissipation and the water-water cycle. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Chrysanthemum inducum-hybrid `Coral Charm', Hibiscus rosa-sinensis L. `Cairo Red' and Spathiphyllum wallisii Regel `Petit' were grown in natural light in a greenhouse at three levels of irradiance using permanent shade screens. Light acclimation of photosynthesis was characterized using modulated chlorophyll a fluorescence of intact leaves. A close correlation was found between the degree of reduction of the primary electron acceptor QA of Photosystem II (PS II) approximated as the fluorescence parameter 1−qP, and light acclimation. The action range of 1−qP was 0–0.4 from darkness to full irradiance around noon, within the respective light treatments in the greenhouse, indicating that most PS II reaction centres were kept open. In general, the index for electron transport (ETR) measured by chlorophyll fluorescence was higher for high-light (HL) than intermediate-(IL) and low-light (LL) grown plants. However, HL Chrysanthemum showed 40% higher ETR than HL Hibiscus at light saturation, despite identical redox states of QA. The light acclimation of the non-radiative dissipation of excess energy in the antenna, NPQ, varied considerably between the species. However, when normalized against qP, a strong negative correlation was found between thermal dissipation and ETR measured by chlorophyll fluorescence. To be able to accommodate a high flux of electrons through PS II, the plants with the highest light-saturated ETR had the lowest NPQ/qP. The possibility of using chlorophyll fluorescence for quantification of the energy balance between energy input and utilization in PS II in intact leaves is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

12.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

13.
Irradiance data software developed by the NREL Solar Radiation Laboratory (Simple Model of Atmospheric Radiative Transfer of Sunshine, SMARTS) has been used for modelling photosynthesis. Spectra and total irradiance were expressed in terms of quanta [mol m−2 s−1, photosynthetic photon flux density, PPFD (400–700 nm)]. Using the SMARTS software it is possible to (1) calculate the solar spectrum for a planar surface for any given solar elevation angle, allowing for the attenuating effects of the atmosphere on extraterrestrial irradiance at each wavelength in the 400–700 nm range and for the thickness of atmosphere the light must pass through during the course of a day, (2) calculate PPFD vs. solar time for any latitude and date and (3) estimate total daily irradiance for any latitude and date and hence calculate the total photon irradiance for a whole year or for a growing season. Models of photosynthetic activity vs. PPFD are discussed. Gross photosynthesis (P g) vs. photosynthetic photon flux density (PPFD) (P g vs. I) characteristics of single leaves compared to that of a canopy of leaves are different. It is shown that that the optimum irradiance for a leaf (Iopt) is the half-saturation irradiance for a battery of leaves in series. A C3 plant, with leaves having an optimum photosynthetic rate at 700 μmol m−2 s−1 PPFD, was used as a realistic worked example. The model gives good estimates of gross photosynthesis (P g) for a given date and latitude. Seasonal and annual estimates of P g can be made. Taking cloudiness into account, the model predicts maximum P g rates of about 10 g(C) m−2 d−1, which is close to the maximum reported P g experimental measurements.  相似文献   

14.
The ability of spring barley (Hordeum vulgare cv. Akcent) to adjust the composition and function of the photosynthetic apparatus to growth irradiances of 25–1200 μmol m−2 s−1 was studied by gas exchange and chlorophyll a fluorescence measurements and high-performance liquid chromatography. The increased growth irradiance stimulated light- and CO2-saturated rates of CO2 assimilation expressed on a leaf area basis up to 730 μmol m−2 s−1 (HL730), whereas at an irradiance of 1200 μmol m−2 s−1 (EHL1200) both rates decreased significantly. Further, the acclimation to EHL1200 was associated with an extremely high chlorophyll a/b ratio (3.97), a more than doubled xanthophyll cycle pool (VAZ) and a six-fold higher de-epoxidation state of the xanthophyll cycle pigments as compared to barley grown under 25 μmol m−2 s−1 (LL25). EHL1200 plants also exhibited a long-term inhibition of Photosystem II (PS II) photochemical efficiency (F v/F m). Photosynthetic capacity, chlorophyll a/b and VAZ revealed a linear trend of dependence on PS II excitation pressure in a certain range of growth irradiances (100–730 μmol m−2 s−1). The deviation from linearity of these relationships for EHL1200 barley is discussed. In addition, the role of increased VAZ and/or accumulation of zeaxanthin and antheraxanthin in acclimation of barley to high irradiance is studied with respect to regulation of non-radiative dissipation and/or photochemical efficiency within PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 μmol m−2 s−1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of 18: 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance.  相似文献   

16.
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8–3 °C) and for varied duration (0–12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m−2 s−1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv’/Fm’ when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 − R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ.  相似文献   

17.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

18.
Diurnal changes of photosynthesis in the leaves of grapevine (Vitis vinifera × V. labrusca) cultivars Campbell Early and Kyoho grown in the field were compared with respect to gas exchanges and actual quantum yield of photosystem 2 (ΦPS2) in late May. Net photosynthetic rate (PN) of the two cultivars rapidly increased in the morning, saturated at photosynthetic photon flux density (PPFD) from 1200 to 1500 μmol m−2 s−1 between 10:00 and 12:00 and slowly decreased after midday. Maximum PN was 13.7 and 12.5 μmol m−2 s−1 in Campbell Early and Kyoho, respectively. The stomatal conductance (gs) and transpiration rate changed in parallel with PN, indicating that PN was greatly affected by gs. However, the decrease in PN after midday under saturating PPFD was also associated with the observed depression of ΦPS2 at high PPFD. The substantial increase in the leaf to air vapour pressure deficit after midday might also contribute to decline of gs and PN.  相似文献   

19.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

20.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号