首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precursor predicted by the nucleotide sequence of the MF alpha 2 gene of Saccharomyces cerevisiae contains one copy of the tridecapeptide alpha-factor previously characterized (H2N-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-COOH) and one copy of a peptide that contains two conservative amino acid substitutions (H2N-Trp-His-Trp-Leu-Asn-Leu-Arg-Pro-Gly-Gln-Pro-Met-Tyr-COOH). To determine whether the novel molecule possesses biological activity, the Asn-5,Arg-7 tridecapeptide was prepared chemically by solid-phase peptide synthesis. Growth arrest and morphogenesis assays gave identical activity profiles for the Asn-5,Arg-7 peptide and the other gene product, the Gln-5,Lys-7 peptide. The activities of the two peptides were additive and indistinguishable for S. cerevisiae X2180-1A. When present in fourfold molar excess, the biologically inactive desTrp-1,Ala-3 dodecapeptide reversed activity of the Asn-5,Arg-7 and Gln-5,Lys-7 tridecapeptides. Furthermore, neither peptide caused growth arrest of a MATa ste2(Ts) mutant when assayed at the restrictive temperature. These studies suggest that both pheromones interact with the alpha-factor receptor in a similar manner.  相似文献   

2.
The cholecystokinin-A receptor (CCK-AR) is a G protein-coupled receptor that mediates important central and peripheral cholecystokinin actions. Residues of the CCK-AR binding site that interact with the C-terminal part of CCK that is endowed with biological activity are still unknown. Here we report on the identification of Arg-336 and Asn-333 of CCK-AR, which interact with the Asp-8 carboxylate and the C-terminal amide of CCK-9, respectively. Identification of the two amino acids was achieved by dynamics-based docking of CCK in a refined three-dimensional model of CCK-AR using, as constraints, previous results that demonstrated that Trp-39/Gln-40 and Met-195/Arg-197 interact with the N terminus and the sulfated tyrosine of CCK, respectively. Arg-336-Asp-8 and Asn-333-amide interactions were pharmacologically assessed by mutational exchange of Arg-336 and Asn-333 in the receptor or reciprocal elimination of the partner chemical functions in CCK. This study also allowed us to demonstrate that (i) the identified interactions are crucial for stabilizing the high affinity phospholipase C-coupled state of the CCK-AR.CCK complex, (ii) Arg-336 and Asn-333 are directly involved in interactions with nonpeptide antagonists SR-27,897 and L-364,718, and (iii) Arg-336 but not Asn-333 is directly involved in the binding of the peptide antagonist JMV 179 and the peptide partial agonist JMV 180. These data will be used to obtain an integrated dynamic view of the molecular processes that link agonist binding to receptor activation.  相似文献   

3.
ERAP1 polymorphism involving residues 528 and 575/725 is associated with ankylosing spondylitis among HLA-B27-positive individuals. We used four recombinant variants to address the combined effects of the K528R and D575N polymorphism on the processing of HLA-B27 ligands. The hydrolysis of a fluorogenic substrate, Arg-528/Asp-575 < Lys-528/Asp-575 < Arg-528/Asn-575 < Lys-528/Asn-575, indicated that the relative activity of variants carrying Arg-528 or Lys-528 depends on residue 575. Asp-575 conferred lower activity than Asn-575, but the difference depended on residue 528. The same hierarchy was observed with synthetic precursors of HLA-B27 ligands, but the effects were peptide-dependent. Sometimes the epitope yields were variant-specific at all times. For other peptides, concomitant generation and destruction led to similar epitope amounts with all the variants at long, but not at short, digestion times. The generation/destruction balance of two related HLA-B27 ligands was analyzed in vitro and in live cells. Their relative yields at long digestion times were comparable with those from HLA-B27-positive cells, suggesting that ERAP1 was a major determinant of the abundance of these peptides in vivo. The hydrolysis of fluorogenic and peptide substrates by an HLA-B27 ligand or a shorter peptide, respectively, was increasingly inhibited as a function of ERAP1 activity, indicating that residues 528 and 575 affect substrate inhibition of ERAP1 trimming. The significant and complex effects of co-occurring ERAP1 polymorphisms on multiple HLA-B27 ligands, and their potential to alter the immunological and pathogenetic features of HLA-B27 as a function of the ERAP1 context, explain the epistatic association of both molecules in ankylosing spondylitis.  相似文献   

4.
We have previously shown that an antigenic site in native lysozyme resides around the disulphide bridge 30-115 and incorporates Lys-33 and Lys-116 and one or both of Tyr-20 and Tyr-23. These residues fall in an imaginary line circumscribing part of the surface of the molecule and passing through the spatially adjacent residues Tyr-20, Arg-21, Tyr-23, Lys-116, Asn-113, Arg-114, Phe-34 and Lys-33. The identity of the site was confirmed by demonstrating that the synthetic peptide Tyr-Arg-Tyr-Gly-Lys-Asn-Arg-Gly-Phe-Lys (which does not exist in lysozyme but simulates a surface region of it), and an analogue in which glycine replaced Tyr-23, possessed remarkable immuno-chemical reactivity that accounted entirely for the expected reactivity of the site in native lysozyme. Tyr-23 is not part of the site, and its contribution was satisfied by a glycine spacer. The novel approach presents a powerful technique for the delineation of antigenic (and other binding) sites in native proteins and confirms that these need not always comprise residues in direct peptide linkage.  相似文献   

5.
Aminopeptidase A (EC 3.4.11.7, APA) is a 160 kDa membrane-bound zinc enzyme that contains the HEXXH consensus sequence found in members of the zinc metalloprotease family, the zincins. In addition, the monozinc aminopeptidases are characterized by another conserved motif, GXMEN, the glutamate residue of which has been shown to be implicated in the exopeptidase specificity of aminopeptidase A [Vazeux G. (1998) Biochem. J. 334, 407-413]. In carboxypeptidase A (EC 3.4.17.1, CPA), the exopeptidase specificity is conferred by an arginine residue (Arg-145) and an asparagine residue (Asn-144). Thus, we hypothesized that Asn-353 of the GXMEN motif in APA plays a similar role to Asn-144 in CPA and contributes to the exopeptidase specificity of APA. We investigated the functional role of Asn-353 in APA by substituting this residue with a glutamine (Gln-353), an alanine (Ala-353) or an aspartate (Asp-353) residue by site-directed mutagenesis. Expression of wild-type and mutated APAs revealed that Gln-353 and Ala-353 are similarly routed and glycosylated to the wild-type APA, whereas Asp-353 is trapped intracellularly and partially glycosylated. Kinetic studies, using alpha-L-glutamyl-beta-naphthylamide (GluNA) as a substrate showed that the K(m) values of the mutants Gln-353 and Ala-353 were increased 11- and 8-fold, respectively, whereas the k(cat) values were decreased (2-fold) resulting in a 24- and 14-fold reduction in cleavage efficiency. When alpha-L-aspartyl-beta-naphthylamide or angiotensin II were used as substrates, the mutations had a greater effect on k(cat), leading to a similar decrease in cleavage efficiencies as that observed with GluNA. We then measured the inhibitory potencies of several classes of inhibitors, glutamate thiol, glutamine thiol and two isomers (L- or D-) of glutamate phosphonate to explore the functional role of Asn-353. The data indicate that Asn-353 is critical for the integrity and catalytic activity of APA. This residue is involved in substrate binding via interactions with the free N-terminal part and with the P1 carboxylate side chain of the substrate. In conclusion, Asn-353 of the GXMEN motif, together with Glu-352, contributes to the exopeptidase specificity of APA and plays an equivalent role to Asn-144 in CPA.  相似文献   

6.
The hirudin variant HV2 was modified by in vitro site-specific mutagenesis of HV2 cDNA to generate HV2(Asn-47----Lys), HV2(Asn-47----Arg) and HV2(Lys-35----Thr, Asn-47----Lys). Residues 35 and 47 are positioned respectively within the finger and prothrombin-like domains of hirudin, both of which have been suggested as thrombin binding sites. The modified polypeptides were synthesized in Saccharomyces cerevisiae using a secretion vector and purified from culture supernatants. By analysis of the human alpha-thrombin:hirudin inhibition reaction in steady-state conditions it was shown that the dissociation constants for HV2(Lys-47) and HV2(Arg-47) were 5- to 14-fold lower than for unmodified HV2, whereas mutation of Lys-35 did not significantly alter the inhibition kinetics. Furthermore, HV2(Lys-47), whose sequence is identical to a natural hirudin variant, displayed enhanced anti-thrombotic activity in vivo, having a 100-fold lower ED50 compared to HV2 in the rabbit Wessler venous thrombosis model. These results support a role for the prothrombin-like domain in thrombin binding and, moreover, demonstrate that in vivo antithrombotic efficiency correlates with the dissociation constant of the inhibition reaction.  相似文献   

7.
Eosinophil cationic protein (ECP) is located in the matrix of the eosinophil's large specific granule and has marked toxicity for a variety of helminth parasites, hemoflagellates, bacteria, single-stranded RNA virus, and mammalian cells and tissues. It belongs to the bovine pancreatic ribonuclease A (RNase A) family and exhibits ribonucleolytic activity which is about 100-fold lower than that of a related eosinophil ribonuclease, the eosinophil-derived neurotoxin (EDN). The crystal structure of human ECP, determined at 2.4 A, is similar to that of RNase A and EDN. It reveals that residues Gln-14, His-15, Lys-38, Thr-42, and His-128 at the active site are conserved as in all other RNase A homologues. Nevertheless, evidence for considerable divergence of ECP is also implicit in the structure. Amino acid residues Arg-7, Trp-10, Asn-39, His-64, and His-82 appear to play a key part in the substrate specificity and low catalytic activity of ECP. The structure also shows how the cationic residues are distributed on the surface of the ECP molecule that may have implications for an understanding of the cytotoxicity of this enzyme.  相似文献   

8.
Short peptidoglycan recognition protein (PGRP-S) is a member of the innate immunity system in mammals. PGRP-S from Camelus dromedarius (CPGRP-S) is found to be highly potent against bacterial infections. It is capable of binding to a wide range of pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). The heparin-like polysaccharides have also been observed in some bacteria such as the capsule of K5 Escherichia coli thus making them relevant for determining the nature of their interactions with CPGRP-S. The binding studies of CPGRP-S with heparin disaccharide in solution using surface plasmon resonance gave a value 3.3×10-7 M for the dissociation constant (Kd). The structure of the heparin bound CPGRP-S determined at 2.8Å resolution revealed the presence of a bound heparin molecule in the binding pocket of CPGRP-S. It was found anchored tightly to the protein with the help of several ionic and hydrogen bonded interactions. Three sulphate groups of heparin S1, S2 and S3 have been found to interact with residues, Arg-31, Lys-90, Thr- 97, Asn-99 Asn-140, Gln-150 and Arg-170 of CPGRP-S. The binding site includes two subsites, S-I and S-II with cleft-like structures. Heparin disaccharide is bound in subsite S-I. Previously determined structures of the complexes of CPGRP-S with LPS, LTA and PGN also showed that their glycan moieties were also held in subsite S-I indicating that heparin disaccharide also represents an important element for the recognition by CPGRP-S.  相似文献   

9.
Cyclophilin 40 (CyP40) is a tetratricopeptide repeat (TPR)-containing immunophilin and a modulator of steroid receptor function through its binding to heat shock protein 90 (Hsp90). Critical to this binding are the carboxyl-terminal MEEVD motif of Hsp90 and the TPR domain of CyP40. Two different models of the CyP40-MEEVD peptide interaction were used as the basis for a comprehensive mutational analysis of the Hsp90-interacting domain of CyP40. Using a carboxyl-terminal CyP40 construct as template, 24 amino acids from the TPR and flanking acidic and basic domains were individually mutated by site-directed mutagenesis, and the mutants were coexpressed in yeast with a carboxyl-terminal Hsp90beta construct and qualitatively assessed for binding using a beta-galactosidase filter assay. For quantitative assessment, mutants were expressed as glutathione S-transferase fusion proteins and assayed for binding to carboxyl-terminal Hsp90beta using conventional pulldown and enzyme-linked immunosorbent assay microtiter plate assays. Collectively, the models predict that the following TPR residues help define a binding groove for the MEEVD peptide: Lys-227, Asn-231, Phe-234, Ser-274, Asn-278, Lys-308, and Arg-312. Mutational analysis identified five of these residues (Lys-227, Asn-231, Asn-278, Lys-308, and Arg-312) as essential for Hsp90 binding. The other two residues (Phe-234 and Ser-274) and another three TPR domain residues not definitively associated with the binding groove (Leu-284, Lys-285, and Asp-329) are required for efficient Hsp90 binding. These data confirm the critical importance of the MEEVD binding groove in CyP40 for Hsp90 recognition and reveal that additional charged and hydrophobic residues within the CyP40 TPR domain are required for Hsp90 binding.  相似文献   

10.
R Shapiro  E A Fox  J F Riordan 《Biochemistry》1989,28(4):1726-1732
The role of lysines in the ribonucleolytic and angiogenic activities of human angiogenin has been examined by chemical modification and site-directed mutagenesis. It was demonstrated previously [Shapiro, R., Weremowicz, S., Riordan, J.F., & Vallee, B.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787] that extensive treatment with lysine reagents markedly decreases the ribonucleolytic activity of angiogenin. In the present study, limited chemical modification with 1-fluoro-2,4-dinitrobenzene followed by C18 high-performance liquid chromatography yielded several (dinitrophenyl)angiogenin derivaties. The major derivative formed had slightly increased enzymatic activity compared with the unmodified protein. Tryptic peptide mapping demonstrated the site of modification to be Lys-50. A second derivative, modified at Lys-60, was 34% active. Analysis of a third derivative indicated that modification of Lys-82 did not decrease activity. Thus, Lys-50 and Lys-82 are unessential for enzymatic activity while Lys-60 may play a minor role. No pure derivative modified at Lys-40, corresponding to the active-site residue Lys-41 of the homologous protein ribonuclease A, could be obtained by chemical procedures. Therefore, we employed oligonucleotide-directed mutagenesis to replace this lysine with glutamine or arginine. The Gln-40 derivative had less than 0.05% enzymatic activity compared with the unmodified protein and substantially reduced angiogenic activity when examined with the chick embryo chorioallantoic membrane assay. These results suggest that the angiogenic activity of the protein is dependent on an intact enzymatic active site. The Arg-40 derivative had 2.2% ribonucleolytic activity compared with unmodified angiogenin. The effects of reductive methylation of this derivative indicate that no lysines other than Lys-40 are critical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The amino acid sequences of the two major isozymes of rhizopuspepsin, an aspartic proteinase from Rhizopus chinensis, were determined by analyzing the tryptic peptides derived from the reduced and carboxymethylated (RCm-) derivative of each isozyme. Amino acid substitutions were shown to occur at eight positions. Rhizopuspepsin I, with an isoelectric point of 5.1, had Ile-15, Asn-61, Ser-116, Lys-162, Ile-230, Tyr-241, Asp-293, and Glu-325, whereas rhizopuspepsin II, with an isoelectric point of 5.8, had Val-15, Lys-61, Asn-116, Ser-162, Val-230, Ser-241, Asn-293, and Gln-325, the other parts of the two isozymes being identical with each other. Thus, rhizopuspepsin I had two more net negative charges than rhizopuspepsin II. This is consistent with the difference in isoelectric point of these two isozymes.  相似文献   

12.
Beta-lactamase of Bacillus licheniformis 749/C at 2 A resolution   总被引:8,自引:0,他引:8  
Two crystal forms (A and B) of the 29,500 Da Class A beta-lactamase (penicillinase) from Bacillus licheniformis 749/C have been examined crystallographically. The structure of B-form crystals has been solved to 2 A resolution, the starting model for which was a 3.5 A structure obtained from A-form crystals. The beta-lactamase has an alpha + beta structure with 11 helices and 5 beta-strands seen also in a penicillin target DD-peptidase of Streptomyces R61. Atomic parameters of the two molecules in the asymmetric unit were refined by simulated annealing at 2.0 A resolution. The R factor is 0.208 for the 27,330 data greater than 3 sigma (F), with water molecules excluded from the model. The catalytic Ser-70 is at the N-terminus of a helix and is within hydrogen bonding distance of conserved Lys-73. Also interacting with the Lys-73 are Asn-132 and the conserved Glu-166, which is on a potentially flexible helix-containing loop. The structure suggests the binding of beta-lactam substrates is facilitated by interactions with Lys-234, Thr-235, and Ala-237 in a conserved beta-strand peptide, which is antiparallel to the beta-lactam's acylamido linkage; an exposed cavity near Asn-170 exists for acylamido substituents. The reactive double bond of clavulanate-type inhibitors may interact with Arg-244 on the fourth beta-strand. A very similar binding site architecture is seen in the DD-peptidase.  相似文献   

13.
A docking model of the alpha(2) I-domain and collagen has been proposed based on their crystal structures (Emsley, J., King, S., Bergelson, J., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). In this model, several amino acid residues in the I-domain make direct contact with collagen (Asn-154, Asp-219, Leu-220, Glu-256, His-258, Tyr-285, Asn-289, Leu-291, Asn-295, and Lys-298), and the protruding C-helix of alpha(2) (residues 284-288) determines ligand specificity. Because most of the proposed critical residues are not conserved, different I-domains are predicted to bind to collagen differently. We found that deleting the entire C-helix or mutating the predicted critical residues had no effect on collagen binding to whole alpha(2)beta(1), with the exception that mutating Asn-154, Asp-219, and His-258 had a moderate effect. We performed further studies and found that mutating the conserved surface-exposed residues in the metal ion-dependent adhesion site (MIDAS) (Tyr-157 and Gln-215) significantly blocks collagen binding. We have revised the docking model based on the mutagenesis data. In the revised model, conserved Tyr-157 makes contact with collagen in addition to the previously proposed Asn-154, Asp-219, His-258, and Tyr-285 residues. These results suggest that the collagen-binding I-domains (e.g. alpha(1), alpha(2), and alpha(10)) bind to collagen in a similar fashion.  相似文献   

14.
Mapping the effector region in Thermus thermophilus elongation factor Tu   总被引:5,自引:0,他引:5  
Native elongation factor Tu from Thermus thermophilus is initially attacked by various endoproteases in a region spanning amino acid residues 40-70. By comparing the hydrolysis rates of nucleotide-free and GDP-bound EF-Tu, only a small difference was observed for the tryptic cleavage at Arg-59. Protease V-8 attacks Glu-55 only in a GDP/GTP form, whereas this enzyme exclusively hydrolyze Asn-64 in nucleotide-free EF-Tu, even when the protein had been previously cleaved at Arg-59. Binding of GDP leads to a 42-fold decreased rate of hydrolysis by the Lys-C protease at Lys-52. It also reduces the accessibility of Lys-275 to trypsin, reflecting a "long-range" effect from nucleotide binding domain I to domain II. Only slight differences were observed in the rate of hydrolysis at all positions in the GDP- versus the GTP-bound form. The intrinsic GTPase activity was slightly reduced in trypsin-treated EF-Tu, significantly impaired in EF-Tu cleaved at Lys-52, and completely abolished in EF-Tu cleaved at Asn-64. No ribosome-induced GTPase activity was observed for protease-cleaved EF-Tu's. Treatment of these proteins with periodate-oxidized GDP or GTP followed by cyanoborohydride led to covalent modification of the new N-terminus located exclusively within region 52-60. The highest reactivity was shown by the N-terminus of Glu-56. Additionally, lysine residues in the native protein sensitive to affinity labeling [Peter, M.E., Wittmann-Liebold, B., & Sprinzl, M. (1988) Biochemistry 27, 9132-9139] lost their reactivity upon cleavage of EF-Tu in region 52-60, suggesting an altered structure of the cleaved protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
PW2 (HPLKQYWWRPSI) was selected from phage display libraries through an alternative panning method using living sporozoites of Eimeria acervulina as target. Synthetic PW2 shows anticoccidial activity against E. acervulina and Eimeria tenella with very low hemolytic activity. It also displays antifungal activity but no activity against bacteria. We present the solution structure of the PW2 bound to SDS micelles. In the absence of an interface, PW2 is in random coil conformation. In micelles, structural calculation shows that Trp-7 forms the hydrophobic core that is important for the peptide folding. Lys-4, Tyr-6, Trp-8, and Arg-9 are in the same surface, possibly facing the micelle interface. This possibility was supported by the fact that chemical shift differences for these residues were more pronounced when compared with PW2 in water and in SDS. PW2 gains structure upon binding to SDS micelles. Lys-4, Tyr-6, Trp-8, and Arg-9 were found to bind to the micelle. Trp-7, Trp-8, and Arg-9 composed the WW+ consensus found in the sequence of the peptides selected with the phage display technique against E. acervulina sporozoites. This suggested that Trp-7, Trp-8, and Arg-9 are probably key residues not only for the peptide interaction with SDS micelles but also for the interaction with E. acervulina sporozoites surface.  相似文献   

17.
Steric and chemical evidence had previously shown that residues Lys-7 and/or Arg-10 of bovine pancreatic RNAase A could belong to the p2 phosphate-binding subsite, adjacent to the 3' side of the main site p1. In the present work chemical modification of the enzyme with pyridoxal 5'-phosphate and cyclohexane-1,2-dione was carried out in order to identify these residues positively as part of the p2 site. The reaction with pyridoxal 5'-phosphate yields three monosubstituted derivatives, at Lys-1, Lys-7 and Lys-41. A strong decrease in the yield of derivatives at Lys-7 and Lys-41 was observed when either p1 or p2 was specifically blocked by 5'-AMP or 3'-AMP respectively. These experiments indicate that both sites are needed for the reaction of pyridoxal 5'-phosphate with RNAase A to take place. The positive charge in one of the sites interacts with the phosphate group of pyridoxal 5'-phosphate, giving the proper orientation to the carbonyl group, which then reacts with the lysine residue present in the other site. The absence of reaction between pyridoxal 5'-phosphate and an RNAase derivative that has the p2 site blocked supports this hypothesis. Labelling of Lys-7 with pyridoxal 5'-phosphate has a more pronounced effect on the kinetics with RNA than with the smaller substrate 2',3'-cyclic CMP. In addition, when the phosphate moiety of the 5'-phosphopyridoxyl group was removed with alkaline phosphatase the kinetic constants with 2',3'-cyclic CMP returned to values very similar to those of the native enzyme, whereas a higher Km and lower Vmax. were still observed for RNA. This indicates that this new derivative has recovered a free p1 site and, hence, the capability to act on 2',3'-cyclic CMP, but the presence of the pyridoxyl group bound to Lys-7 is still blocking a secondary phosphate-binding site, namely p2. Finally, reaction of cyclohexane-1,2-dione at Arg-10 is suppressed in the presence of 3'-AMP but only a 19% decrease is observed with 5'-AMP, suggesting that Arg-10 is also close to the p2 phosphate-binding subsite.  相似文献   

18.
The crystal structure of a 1:1 complex between the German cockroach allergen Bla g 2 and the Fab' fragment of a monoclonal antibody 7C11 was solved at 2.8-angstroms resolution. Bla g 2 binds to the antibody through four loops that include residues 60-70, 83-86, 98-100, and 129-132. Cation-pi interactions exist between Lys-65, Arg-83, and Lys-132 in Bla g 2 and several tyrosines in 7C11. In the complex with Fab', Bla g 2 forms a dimer, which is stabilized by a quasi-four-helix bundle comprised of an alpha-helix and a helical turn from each allergen monomer, exhibiting a novel dimerization mode for an aspartic protease. A disulfide bridge between C51a and C113, unique to the aspartic protease family, connects the two helical elements within each Bla g 2 monomer, thus facilitating formation of the bundle. Mutation of these cysteines, as well as the residues Asn-52, Gln-110, and Ile-114, involved in hydrophobic interactions within the bundle, resulted in a protein that did not dimerize. The mutant proteins induced less beta-hexosaminidase release from mast cells than the wild-type Bla g 2, suggesting a functional role of dimerization in allergenicity. Because 7C11 shares a binding epitope with IgE, the information gained by analysis of the crystal structure of its complex provided guidance for site-directed mutagenesis of the allergen epitope. We have now identified key residues involved in IgE antibody binding; this information will be useful for the design of vaccines for immunotherapy.  相似文献   

19.
M Ikebe  S Reardon  F S Fay 《FEBS letters》1992,312(2-3):245-248
Myosin light chain kinase (MLCK) contains the autoinhibitor sequence right next to the N-terminus side of the calmodulin binding region. In this paper, the structural requirement of the inhibition of MLCK activity was studied using synthetic peptide analogs. Peptides Ala-783-Lys-799 and Ala-783-Arg-798 inhibited calmodulin independent MLCK at the same potency as the peptide Ala-783-Gly-804. Deletion of Arg-797-Lys-799 or substitution of these residues to Ala markedly increased the Ki while the substitution of Lys-792 and Lys-793 to Ala and the deletion of Lys-784-Lys-785 did not affect the inhibitory activity of the peptides. The results suggest that Arg-797-Arg-798 are especially important for the inhibitory activity among other basic residues in the autoinhibitory region.  相似文献   

20.
Abstract An SHV type β-lactamase frequently found in enterobacteria isolated in Greek hospitals was analyzed. The enzyme (SHV-5a) conferred resistance to ceftazidime and aztreonam. The DNA sequence of the structural gene was determined. The deduced amino acid sequence showed that positions 70–73 were occupied by the active site tetrad Ser-Thr-Phe-Lys. As in SHV-5, Ser-238 and Lys-240 were present. However, one deletion (Gly-54) and three substitutions (Arg-140 for Ala, Asn-192 for Lys and Val-193 for Leu) differentiate SHV-5a β-lactamase from SHV-5. Asn-192 and Val-193 have been reported to date only in the R974 plasmid-mediated SHV-1 β-lactamase. Hydrolysis studies with SHV-5a and SHV-5 showed that the enzymes behaved similarly. Additional evidence that they were functionally indistinguishable was provided by the similar MICs of β-lactams when the enzymes were expressed under isogenic conditions. The sequence differences, however, indicate that they are derived from different ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号