首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the first characterization of a WD40 repeat-containing myosin identified in the apicomplexan parasite Gregarina polymorpha. This 222.7 kDa myosin, GpMyoF, contains a canonical myosin motor domain, a neck domain with 6 IQ motifs, a tail domain containing short regions of predicted coiled-coil structure, and, most notably, multiple WD40 repeats at the C-terminus. In other proteins such repeats assemble into a beta-propeller structure implicated in mediating protein-protein interactions. Confocal microscopy suggests that GpMyoF is localized to the annular myonemes that gird the parasite cortex. Extraction studies indicate that this myosin shows an unusually tight association with the cytoskeletal fraction and can be solubilized only by treatment with high pH (11.5) or the anionic detergent sarkosyl. This novel myosin and its homologs, which have been identified in several related genera, appear to be unique to the Apicomplexa and represent the only myosins known to contain the WD40 domain. The function of this myosin in G. polymorpha or any of the other apicomplexan parasites remains uncertain.  相似文献   

2.
Unconventional myosins interact with the dense cortical actin network during processes such as membrane trafficking, cell migration, and mechanotransduction. Our understanding of unconventional myosin function is derived largely from assays that examine the interaction of a single myosin with a single actin filament. In this study, we have developed a model system to study the interaction between multiple tethered unconventional myosins and a model F-actin cortex, namely the lamellipodium of a migrating fish epidermal keratocyte. Using myosin VI, which moves toward the pointed end of actin filaments, we directly determine the polarity of the extracted keratocyte lamellipodium from the cell periphery to the cell nucleus. We use a combination of experimentation and simulation to demonstrate that multiple myosin VI molecules can coordinate to efficiently transport vesicle-size cargo over 10 µm of the dense interlaced actin network. Furthermore, several molecules of monomeric myosin VI, which are nonprocessive in single molecule assays, can coordinate to transport cargo with similar speeds as dimers.  相似文献   

3.
Myosins are molecular motors that move along filamentous actin. Seven classes of myosin are expressed in vertebrates: conventional myosin, or myosin-II, as well as the 6 unconventional myosin classes -I, -V, -VI, -VII, -IX, and -X. We have mapped in mouse 22 probes encompassing all known unconventional myosins and, as a result, have identified 16 potential unconventional myosin genes. These genes include 7 myosins-I, 2 myosins-V, 1 myosin-VI, 3 myosins-VII, 2 myosins-IX, and 1 myosin-X. The map location of 5 of these genes was identified in human chromosomes by fluorescencein situhybridization.  相似文献   

4.
Class XIVa myosins comprise a unique group of myosin motor proteins found in apicomplexan parasites, including those that cause malaria and toxoplasmosis. The founding member of the class XIVa family, Toxoplasma gondii myosin A (TgMyoA), is a monomeric unconventional myosin that functions at the parasite periphery to control gliding motility, host cell invasion, and host cell egress. How the motor activity of TgMyoA is regulated during these critical steps in the parasite''s lytic cycle is unknown. We show here that a small-molecule enhancer of T. gondii motility and invasion (compound 130038) causes an increase in parasite intracellular calcium levels, leading to a calcium-dependent increase in TgMyoA phosphorylation. Mutation of the major sites of phosphorylation altered parasite motile behavior upon compound 130038 treatment, and parasites expressing a nonphosphorylatable mutant myosin egressed from host cells more slowly in response to treatment with calcium ionophore. These data demonstrate that TgMyoA undergoes calcium-dependent phosphorylation, which modulates myosin-driven processes in this important human pathogen.  相似文献   

5.
The myosin superfamily comprises of actin‐dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL‐B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.  相似文献   

6.
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.  相似文献   

7.
Myosins are a large superfamily of motor proteins which, in association with actin, are involved in intra- cellular motile processes. In addition to the conventional myosins involved in muscle contractility, there is, in animal cells, a wide range of unconventional myosins implicated in membrane-associated processes, such as vesicle transport and membrane dynamics. In plant cells, however, very little is known about myosins. We have raised an antibody to the recombinant tail region of Arabidopsis thaliana myosin 1 (a class VIII myosin) and used it in immunofluorescence and EM studies on root cells from cress and maize. The plant myosin VIII is found to be concentrated at newly formed cross walls at the stage in which the phragmoplast cytoskeleton has depolymerized and the new cell plate is beginning to mature. These walls are rich in plasmodesmata and we show that they are the regions where the longitudinal actin cables appear to attach. Myosin VIII appears to be localized in these plasmodesmata and we suggest that this protein is involved in maturation of the cell plate and the re-establishment of cytoplasmic actin cables at sites of intercellular communication.  相似文献   

8.
Obligate intracellular parasites of the phylum Apicomplexa exhibit gliding motility, a unique form of substrate-dependent locomotion essential for host cell invasion and shown to involve the parasite actin cytoskeleton and myosin motor(s). Toxoplasma gondii has been shown to express three class XIV myosins, TgM-A, -B, and -C. We identified an additional such myosin, TgM-D, and completed the sequences of a related Plasmodium falciparum myosin, PfM-A. Despite divergent structural features, TgM-A purified from parasites bound actin in an ATP-dependent manner. Isoform-specific antibodies revealed that TgM-A and recombinant mycTgM-A were localized right beneath the plasma membrane, and subcellular fractionation indicated a tight membrane association. Recombinant TgM-D also had a peripheral although not as sharply defined localization. Truncation of their respective tail domains abolished peripheral localization and tight membrane association. Conversely, fusion of the tails to green fluorescent protein (GFP) was sufficient to confer plasma membrane localization and sedimentability. The peripheral localization of TgM-A and of the GFP-tail fusion did not depend on an intact F-actin cytoskeleton, and the GFP chimera did not localize to the plasma membrane of HeLa cells. Finally, we showed that the specific localization determinants were in the very C terminus of the TgM-A tail, and site-directed mutagenesis revealed two essential arginine residues. We discuss the evidence for a proteinaceous plasma membrane receptor and the implications for the invasion process.  相似文献   

9.
Dictyostelium discoideum is a simple eukaryote amenable to detailed molecular studies of the endocytic processes phagocytosis and macropinocytosis. Both the actin cytoskeleton and associated myosin motors are well-described and a range of mutants are now available that enable characterization of the role of the cytoskeleton in a range of cellular functions. Molecular genetic studies have uncovered roles for two different classes of Dictyostelium unconventional myosins in endocytosis. The class I myosins contribute to both macropinocytosis and phagocytosis by playing a general role in controlling actin-dependent manipulations of the actin-rich cortex. A class VII myosin has been shown to be important for phagocytosis. This brief review summarizes what is known about the role of these different myosins in both fluid and particle uptake in this system.  相似文献   

10.
曹洋  沈梅  张洁  李向东 《昆虫知识》2011,48(2):239-246
肌球蛋白是一类重要的分子马达,可以将ATP水解产生的能量转化成动能,沿由肌动蛋白组成的细丝运动。肌球蛋白构成一个大的基因家族,在许多细胞活动中起着重要作用,包括肌肉收缩、胞内转运、听觉、视觉等。果蝇基因组有13种肌球蛋白基因,包括2种常规肌球蛋白和11种非常规肌球蛋白。本文综述了近年来果蝇非常规肌球蛋白的研究进展。  相似文献   

11.
Members of the myosin superfamily of actin-based motor proteins were previously thought to move only towards the barbed end of the actin filament. In an extraordinary reversal of this dogma, an abundant and widespread unconventional myosin known as myosin VI has recently been shown to move towards the pointed end of the actin filament - the opposite direction of all other characterized myosins. This discovery raises novel and intriguing questions about the molecular mechanisms of reversal and the biological roles of this 'backwards' myosin.  相似文献   

12.
A novel widely expressed type of myosin (fifth unconventional myosin from rat: myr 5) from rat tissues, defining a ninth class of myosins, was identified. The predicted amino acid sequence of myr 5 exhibits several features not found previously in myosins. The myosin head domain contains a unique N-terminal extension and an insertion of 120 amino acids at a postulated myosin-actin contact site. Nevertheless, myr 5 is able to bind actin filaments in an ATP-regulated manner. The head domain is followed by four putative light chain binding sites. The tail domain of myr 5 contains a region which coordinates two atoms of zinc followed by a region that stimulates GTP hydrolysis of members of the ras-related rho subfamily of small G-proteins. Myr 5 therefore provides the first direct link between rho GTPases which have been implicated in the regulation of actin organization and the actin cytoskeleton. It is also the first unconventional myosin for which a tail binding partner(s), namely members of the rho family, has been identified.  相似文献   

13.

Background  

Myosins are actin-activated ATPases that use energy to generate force and move along actin filaments, dragging with their tails different cargos. Plant myosins belong to the group of unconventional myosins and Arabidopsis myosin VIII gene family contains four members: ATM1, ATM2, myosin VIIIA and myosin VIIIB.  相似文献   

14.
Myosin VI, a ubiquitously expressed unconventional myosin, has roles in a broad array of biological processes. Unusual for this motor family, myosin VI moves toward the minus (pointed) end of actin filaments. Myosin VI has two light chain binding sites that can both bind calmodulin (CaM). However unconventional myosins could use tissue-specific light chains to modify their activity. In the Drosophila testis, myosin VI is important for maintenance of moving actin structures, called actin cones, which mediate spermatid individualization. A CaM-related protein, Androcam (Acam), is abundantly expressed in the testis and like myosin VI, accumulates on these cones. We have investigated the possibility that Acam is a testis-specific light chain of Drosophila myosin VI. We find that Acam and myosin VI precisely colocalize at the leading edge of the actin cones and that myosin VI is necessary for this Acam localization. Further, myosin VI and Acam co-immunoprecipitate from the testis and interact in yeast two-hybrid assays. Finally Acam binds with high affinity to peptide versions of both myosin VI light chain binding sites. In contrast, although Drosophila CaM also shows high affinity interactions with these peptides, we cannot detect a CaM/myosin VI interaction in the testis. We conclude that Acam and not CaM acts as a myosin VI light chain in the Drosophila testis and hypothesize that it may alter the regulation of myosin VI in this tissue.  相似文献   

15.
Light stimulation of locust (Schistocerca gregaria) photoreceptors results in an actin-dependent translocation of mitochondria towards the photoreceptive microvilli and an antagonistic movement of endoplasmic reticulum towards the cell body. Using immunocytochemical techniques, we have tried to identify myosin-like motors that may drive the light-induced organelle motility. A monoclonal antibody against the motor domain of Acanthamoeba myosin identifies a prominent 110-kDa protein on Western blots of locust retina. Cross-reactivity with two polyclonal anti-myosin antibodies and a monoclonal anti-myosin-I-antibody, together with ATP-dependent binding to actin filaments, provides evidence that the 110-kDa protein is an unconventional myosin. By indirect immunofluorescence, the 110-kDa protein has been localized to both photoreceptors and pigment cells within the retina. In the photoreceptor cells, the 110-kDa protein is bound to the surface of mitochondria. This putative unconventional myosin may thus be a motor protein involved in the light-induced translocation of mitochondria in photoreceptors.  相似文献   

16.
It is 50 years since the sliding of actin and myosin filaments was proposed as the basis of force generation and shortening in striated muscle. Although this is now generally accepted, the detailed molecular mechanism of how myosin uses adenosine triphosphate to generate force during its cyclic interaction with actin is only now being unravelled. New insights have come from the unconventional myosins, especially myosin V. Myosin V is kinetically tuned to allow movement on actin filaments as a single molecule, which has led to new kinetic, mechanical and structural data that have filled in missing pieces of the actomyosin-chemo-mechanical transduction puzzle.  相似文献   

17.
Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.  相似文献   

18.
Unconventional myosins have now been identified in amoeba as well as in higher eucaryotic cells. Their cellular localization, their ability to bind membrane vesicles and their ability to produce in vitro movement suggest that they can generate forces on the plasma membrane relative to actin filaments as well as on membrane compartments relative to actin. Genetic approaches and biochemical analysis of cells over-producing nonfunctional domains of unconventional myosins have provided direct evidence for a role of unconventional myosins in movement of intracellular vesicles and have allowed us to formulate hypotheses about the possible mechanisms by which unconventional myosins could participate in the intracellular transport of membrane proteins and secretory proteins.  相似文献   

19.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

20.
Successful host cell invasion is a prerequisite for survival of the obligate intracellular apicomplexan parasites and establishment of infection. Toxoplasma gondii penetrates host cells by an active process involving its own actomyosin system and which is distinct from induced phagocytosis. Toxoplasma gondii myosin A (TgMyoA) is presumed to achieve power gliding motion and host cell penetration by the capping of apically released adhesins towards the rear of the parasite. We report here an extensive biochemical characterization of the functional TgMyoA motor complex. TgMyoA is anchored at the plasma membrane and binds a novel type of myosin light chain (TgMLC1). Despite some unusual features, the kinetic and mechanical properties of TgMyoA are unexpectedly similar to those of fast skeletal muscle myosins. Microneedle-laser trap and sliding velocity assays established that TgMyoA moves in unitary steps of 5.3 nm with a velocity of 5.2 microm/s towards the plus end of actin filaments. TgMyoA is the first fast, single-headed myosin and fulfils all the requirements for power parasite gliding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号