首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Igk-J locus of the mouse encodes the immunoglobulin light chain joining (J) segments. Four Igk-J alleles have been described on the basis of restriction enzyme length polymorphisms. The nucleotide sequences of the Igk-J a allele (type strain, C.C58), Igk-J c allele (type strain, SJL/J), and Igk-J d allele (type strain, SK/CamRk) have been determined and are compared with the previously reported Igk-J b allele sequence (type strain, BALB/c). The mouse sequences are also compared with published sequences for rat and human J k sequences. Far more differences were found between the Igk-J a allele and the other mouse alleles than between any two of the latter. These result in two amino acid substitutions which distinguish the J2 and J3 1 segments of the Igk-J a allele from the other three alleles. Use of the Phylogenetic Analysis Using Parsimony program to generate a phylogenetic tree strongly indicates that after divergence from the rat ancestor, there appears to have been an early split between the Igk-J a allele and the evolutionary precursor of the other mouse alleles. There also appears to have been far less divergence from the ancestral condition in the Igk-J a allele than in the other alleles. Also, the presence of only one convergent mutation among the four mouse alleles provides strong evidence against any crossing over within the Igk-J locus during the history of these alleles. Finally, the differences in rates of evolution of the Igk-J alleles are in marked contrast to the relatively uniform rates of divergence of four alleles of a mouse V k gene, Igk-VSer.  相似文献   

2.
Two alloantisera against hybridoma-derived IgE detected allotypic determinants expressed on the murine s chain. An antiserum raised in BALB/c mice against monoclonal IgE of C57BL/6 origin reacted exclusively with IgE of strains having Igh-1b (IgG2a) allotype. The second antiserum, C57BL/6 anti-BALB/c monoclonal IgE, reacted with IgE of strains having Igh-1a, Igh-1d, Igh-1e and Igh-1j allotypes. The genetic studies of (BALB/c x C57BL/6)F1 and backcross F2 animals indicated that the locus controlling the IgE allotype is linked to the Igh-1 locus. This was further confirmed by the possession of respective IgE allotypes by Igh-C congenic mice, BALB/c and BAB-14, C3H.SW/Hz and CWB/Hz. Thus, the allotype detected on the chain is controlled by the seventh murine immunoglobulin allotype locus, and should be designated as the Igh-7 allotype.Abbreviations used in this paper PCA passive cutaneous anaphylaxis - RID radioimmunodiffusion - i.p. intraperitoneally - EA egg albumin - Igh-C immunoglobulin heavy chain constant region locus - DNP 2,4-dinitrophenyl - PBS phosphate-buffered saline - NMS normal mouse serum - KLH keyhole limpet hemocyanin Visiting investigator supported by the Scientific and Humanistic Development Council from the Central University of Venezuela, currently at the following address: Consejo de Desarrollo Cientifico y Universidad Central de Venezuela, Av. Principal Urb. La Floresta Ota., Silenia Caracas, Venezuela.  相似文献   

3.
Rat immunoglobulin E heavy chain locus   总被引:5,自引:0,他引:5  
A 2100 base-pair long sequence has been established which covers all four constant domains of the rat epsilon-chain. An analysis of messenger RNA from an immunoglobulin E producing rat immunocytoma revealed two separate epsilon-chain mRNA species, 2.3 X 10(3) and 2.8 X 10(3) base-pairs long. The latter mRNA encodes the membrane binding form of the epsilon-chain. The membrane exons which are located approximately 2 X 10(3) base-pairs away from the 3'-side of the CH4 exon were also sequenced. A comparison between the rat and mouse epsilon-chains at the protein sequence level revealed an overall homology of 80% which, as expected, is considerably higher than the homology found between rat and human epsilon-chains. The fourth constant domain together with the two membrane exons exhibited the highest degree of homology, 81 to 89%. Only two differences were found when the epsilon-chains from LOU and Sprague Dawley rats were compared. The most striking difference at the nucleotide sequence level between the rat, mouse, and human epsilon genes was found within the first intron. The mouse genome contains a unique 366 base-pair long sequence in this region. The inserted sequence is repetitive and present in approximately 100 copies in the mouse genome. It is flanked by 22 base-pair long direct repeats and contains also 14 base-pair long inverted repeats, thus having properties in common with transposable elements.  相似文献   

4.
5.
 The sheep immunoglobulin heavy chain Igh-J locus has been characterized in order to determine the genomic organization of JH segments and their contribution to heavy chain diversity. The locus contains six segments, of which two are functional and four are apparently pseudogenes. These segments span a 1.8 kilobase (kb) region. The distance between JH-ps4 (the 3′-most segment) and the first domain of the μ-chain encoding constant gene is about 5 kb. The two functional JH segments have a standard upstream recombination signal sequence, including heptamer and nonamer sequences separated by a 22–23 nucleotide spacer, and end with a RNA donor splice site. These two segments possess all the characteristic JH invariant residues and are found in expressed μ heavy chain variable regions. The 5′ functional JH1 segment is used in more than 90% of the cDNAs sequenced to date. The contribution of JH segment germline multiplicity to variable regions diversity appears therefore to be minimal. Comparison with other mammalian JH segments shows that all loci are very closely related and probably have evolved from a common ancestral locus. Received: 19 November 1996 / Revised: 17 March 1997  相似文献   

6.
Allelic forms of the immunoglobulin heavy chain variable region   总被引:7,自引:0,他引:7  
The complete variable region sequence of the heavy chain from a phosphorylcholine-binding myeloma protein of C57/BL allotype has been determined. When this sequence was compared with the germ line-coded heavy chain variable region sequence of BALB/c phosphorylcholine-binding proteins, five differences were observed. Four of the substitutions were located in the framework portion of the variable region and the fifth in the "J" or joining segment. Two of the framework substitutions were found at positions 14 and 16. Previous studies have shown that heavy chains from all anti-phosphorylcholine antibodies induced in C57/BL mice have the same amino acids at positions 14 and 16 as the C57/BL myeloma protein described in this communication. It has therefore been concluded that these residues are encoded in the C57/BL germ line in contrast to two alternatives in the BALB/c genome. This finding, in addition to the 96% homology found between the C57/BL and BALB/c sequences, suggests that these structures represent allelic forms of an entire variable region.  相似文献   

7.
Chromosomal DNA replication in mammals initiates from replication origins whose activity differs in accordance with cell type and differentiation state. In addition to origins that are active in unperturbed conditions, chromosomes also contain dormant origins that can become functional in response to certain genotoxic stress conditions. Improper regulation of origin usage can cause genomic instability leading to tumorigenesis. We review findings from recent single-molecule DNA fiber studies examining replication of the mouse immunoglobulin heavy chain (Igh) locus, in which origin activity over a 400kb region is subject to dramatic developmental regulation. Possible models are discussed to explain such differential origin usage, particularly during replication stress conditions that can activate dormant origins.  相似文献   

8.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

9.
10.
The immunoglobulin heavy chain variable region is encoded as three separate libraries of elements in germ-line DNA: VH, D and JH. To examine the order and regulation of their joining, we have developed assays that distinguish their various combinations and have used the assays to study tumor cell analogs of B-lymphoid cells as well as normal B-lymphoid cells. Abelson murine leukemia virus (A-MuLV) transformed fetal liver cells - the most primitive B-lymphoid cell analog available for analysis - generally had DJH rearrangements at both JH loci. These lines continued DNA rearrangement in culture, in most cases by joining a VH gene segment to an existing DJH complex with the concomitant deletion of intervening DNA sequences. None of these lines or their progeny showed evidence of VHD or DD rearrangements. Heavy chain-producing tumor lines, representing more mature stages of the B-cell pathway, and normal B-lymphocytes had either two VHDJH rearrangements or a VHDJH plus a DJH rearrangement at their two heavy chain loci; they also showed no evidence of VHD or DD rearrangements. These results support an ordered mechanism of variable gene assembly during B-cell differentiation in which D-to-JH rearrangements generally occur first and on both chromosomes followed by VH-to-DJH rearrangements, with both types of joining processes occurring by intrachromosomal deletion. The high percentage of JH alleles remaining in the DJH configuration in heavy chain-producing lines and, especially, in normal B-lymphocytes supports a regulated mechanism of heavy chain allelic exclusion in which a VHDJH rearrangement, if productive, prevents an additional VH-to-DJH rearrangement.  相似文献   

11.
12.
From an IgM secreting hybridoma line we have isolated 16 spontaneous mutants that produce truncated IgM polypeptides. The size of the mu-mRNAs produced by these mutants is normal, but they express 3- to 100-fold less mu-mRNA and mutant mu-protein than the parental cell line. Nucleotide sequence analysis of cloned mu-genes and/or their mRNAs show frameshift mutations that generate in-phase chain termination codons. The extent of the reduction in mu-mRNA levels depends on the position of the nonsense codon within the gene.  相似文献   

13.
In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element.  相似文献   

14.
The evolution of the mouse immunoglobulin heavy chain variable region (Igh-V) locus was investigated by the comprehensive analysis of variable region (Vh) gene family content and restriction fragment polymorphism in the genusMus. The examination of naturalMus domesticus populations suggests an important role for recombination in the generation of the considerable restriction fragment polymorphism found at theIgh-V locus. Although the sizes of individualVh gene families vary widely both within and between differentMus species, evolutionary trends ofVh gene family copy number are revealed by the analysis of homologues of mouseVh gene families inRattus andPeromyscus. Processes of duplication, deletion, and sequence divergence all contribute to the evolution ofVh gene copy number. CertainVh gene families have expanded or contracted differently in the various muroid lineages examined. Collectively, these findings suggest that the evolution of individualVh family size is not driven by strong selective pressure but is relatively neutral, and that gene flow, rather than selection, serves to maintain the high level of restriction fragment polymorphism seen inM. domesticus.  相似文献   

15.
The organization of the human immunoglobulin lambda light chain locus (IGL) was recently described. This locus has been entirely sequenced. To evaluate the extent of the genomic variability existing inside that locus, we compiled all the available sequences of germline IGLV genes to find variants of Vλ sequences. We also looked for RFLP polymorphisms in a reputedly highly polymorphic human population from eastern Senegal, and compiled all RFLP data previously published. Analysis of these data indicates that IGLV alleles are frequent and increase the diversity of the lambda light chain repertoire in the human population. In contrast, RFLP and polymorphism by insertion and/or deletion are limited in that locus. This observation reinforces our hypothesis that the human IGL locus has undergone less evolutionary shuffling than the human kappa or heavy-chain loci. Received: 23 December 1998 / Accepted: 1 March 1999  相似文献   

16.
A tissue-specific enhancer (E mu) lies between the joining (JH) and mu constant region (C mu) gene segments of the immunoglobulin heavy chain (IgH) locus. Since mouse endogenous IgH genes are efficiently transcribed in its absence, the normal function of this enhancer remains ill-defined. Recently, another lymphoid-specific enhancer of equal strength has been identified 3' of the rat IgH locus. We have isolated an analogous sequence from mouse and have mapped it 12.5 kb 3' of the 3'-most constant region gene (C alpha-membrane) of the BALB/c mouse locus. The mouse and rat sequences are 82% homologous and share with other enhancers several DNA sequence motifs capable of binding protein. However, in transient transfection assays, the mouse sequence behaves as a weaker enhancer. The role of this distant element in the expression of endogenous IgH genes, both in E mu-deficient, Ig-producing cell lines and during normal B cell development, is discussed.  相似文献   

17.
18.
Organization and polymorphism of rabbit immunoglobulin heavy chain genes   总被引:10,自引:0,他引:10  
Germline genes encoding C mu, C gamma, C alpha, and C epsilon heavy chains of rabbit immunoglobulins have been isolated from recombinant phage and cosmid libraries. The JH, C mu, C gamma, and C epsilon are found in a 5'-JH-C mu-C gamma-C epsilon-3' orientation on a 90kb stretch of DNA. Four C alpha genes have been cloned and presumably reside 3' to the other CH genes. Southern blot analysis of rabbit sperm DNA indicates that the rabbit genome contains a single C gamma gene, one C mu gene, and as many as 10 C alpha genes. Restriction site polymorphism is found for C mu, C gamma, and C alpha genes of rabbits of various heavy chain haplotypes. The organization of the rabbit CH genes differs from that of mouse and human CH genes in that the rabbit has multiple C alpha genes, whereas mouse and human have one or two C alpha genes, respectively. In addition, mouse and human have four C gamma genes, whereas rabbit has only one C gamma gene. The presence of a single C gamma gene indicates that at least in the rabbits examined, no germline gene encoding latent or unexpected, C gamma allotypes is present. The genetic control of the expression of latent C gamma allotypes is discussed.  相似文献   

19.
20.
D Chowdhury  R Sen 《The EMBO journal》2001,20(22):6394-6403
The immunoglobulin heavy chain (IgH) gene locus spans several megabases. We show that IgH activation during B-cell differentiation, as measured by histone acetylation, occurs in discrete, independently regulated domains. Initially, a 120 kb domain of germline DNA is hyperacetylated, that extends from D(FL16.1), the 5'-most D(H) gene segment, to the intergenic region between Cmu and Cdelta. Germline V(H) genes were not hyperacetylated at this stage, which accounts for D(H) to J(H) recombination occurring first during B-cell development. Subsequent activation of the V(H) locus happens in at least three differentially regulated domains: an interleukin-7-regulated domain consisting of the 5' J558 family, an intermediate domain and the 3' V(H) genes, which are hyperacetylated in response to DJ(H) recombination. These observations lead to mechanisms for two well-documented phenomena in B-cell ontogeny: the sequential rearrangement of D(H) followed by V(H) gene segments, and the preferential recombination of D(H)-proximal V(H) genes in pro-B cells. We suggest that stepwise activation may be a general mechanism by which large segments of the genome are prepared for expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号