首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Low temperature affects the lateral movement of water across the xylem-phloem boundary in intact cotton stems. There is a reduction in the effective diffusion coefficient relating free energy flux to water potential gradients with an associated increase in resistance to water flow. Detached phloem and excised leaves do not show this effect of low temperature. Experiments on stem section halves indicate that the effect is probably associated with the cambial region.  相似文献   

2.
Lipid and Surface Wax Synthesis in Water-stressed Cotton Leaves   总被引:2,自引:1,他引:1       下载免费PDF全文
The incorporation of [2-14C]malonate and [1-14C]acetate into internal lipid and surface wax by cotton leaves (Gossypium hirsutum L. `Deltapine') having water potentials of −8 to −15 bars (controls) and −19 to −32 bars (water-stressed) was compared. Lipid from stressed leaves contained a mean of 57% more radioactivity than corresponding controls for five experiments. Acetyl coenzyme A carboxylase was not limiting to fatty acid synthesis in water-stressed cotton leaves at the water potential levels tested, whereas fatty acid synthetase was stimulated. In four of six experiments, wax from stressed leaves contained a mean of 38% less radioactivity than nonstressed leaves when incubated 24 hours after rehydration. Evidence is presented to show that after a suitable period of rehydration, previously stressed cotton leaves produce more wax than leaves prior to stressing.  相似文献   

3.
Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.  相似文献   

4.
The distribution of 14C from xylem-borne [14C]glutamine, the major nitrogen compound moving in xylem sap of cottonwood (Populus deltoides Bartr. ex Marsh), was followed in rapidly growing shoots with a combination of autoradiographic, microautoradiographic, and radioassay techniques. Autoradiography and 14C analyses of tissues showed that xylem-borne glutamine did not move with the transpiration stream into mature leaves. Instead, most of it was transferred from xylem to phloem in the upper stem and then translocated to young developing tissues. Microautoradiography showed that metaxylem parenchyma, secondary xylem parenchyma, and rays were the major areas of uptake from xylem vessels in the stem. Accumulation in phloem (high 14C concentrations in sieve tubes) took place in internodes subtending recently mature leaves. Little 14C from xylem-borne glutamine was found in phloem of mature leaves, which indicates restricted retransport of glutamine that did enter the leaf. In the primary tissues of the upper stem, most 14C was found in the phloem. Cottonwood stems have an efficient uptake and transfer system that enhances glutamine movement to developing tissues of the upper stem.  相似文献   

5.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

6.
Cellular plasmolysis with l M solutions of mannitol appearedto sever plasmodesmatal interconnections between all cells ofthe stems of Phaseolus vulgaris plants except the sieve element-companioncell (se—cc) complexes. Phloem loading and uptake of [14C]sucroseby the storage cells of the stems was unimpaired by cellularplasmolysis followed by rehydration of the stem tissues. Accumulationof phloem-transported 14C-photosynthates of the treated stemswas inhibited in summer-grown plants and unaffected in winter-grownplants indicating that phloem unloading follows a symplasticand a free-space route respectively depending on growth season.At a concentration that did not interfere with cellular metabolism,p-chloromercuribenzene sulphonic acid (PCMBS) applied to thestems blocked [14C]sucrose loading into the phloem and storagecells of the stem, but had no effect on the pool size of free-spacesugars. This latter response is consistent with a facilitatedmechanism of sugar unloading to the stem free-space. Accumulationof phloem-transported 14C-photosynthates was stimulated by PCMBSand this effect was most pronounced in winter-grown plants.Cellular plasmolysis followed by rehydration abolished the PCMBSaction on 14C-photosynthate accumulation. This effect is consistentwith a PCMBS induction of phloem unloading through the stemsymplast. It is proposed that phloem unloading in bean stemsmay follow either a free-space or symplastic route and thatthe latter route is entrained under sink-limited conditions. Phaseolus vulgaris, french bean, stem, phioem unloading, free-space, symplast  相似文献   

7.

Key message

Along the stem axis phloem’s sieve elements increase in diameter basally at rates comparable to those of xylem conduits and in agreement with principles of hydraulic optimization.

Abstract

Plant physiology relies on the efficiency of the two long-distance transport systems of xylem and phloem. Xylem architecture comprises conduits of small dimensions towards the stem apex, where transpiration-induced tensions are the highest along the root-to-leaves hydraulic pathway, and widen basally to minimize the path length resistance to water flow. Instead, information on phloem anatomy and allometry is extremely scarce, although potentially relevant for the efficiency of sugar transportation. We measured the hydraulic diameter (Dh) of both xylem conduits and phloem sieve elements in parallel at different heights along the stem of a small tree of Picea abies, Fraxinus excelsior and Salix eleagnos. Dh increased from the stem apex to base in both xylem and phloem, with a higher scaling exponent (b) of sieve elements than that of tracheids in the conifer (0.19 vs. 0.14) and lower than that of vessels in the angiosperms (0.14–0.22 vs. 0.19–0.40). In addition, sieve elements were larger than tracheids in P. abies and narrower than angiosperms vessels at any height along the stem. In conclusion, axial conduit widening would seem to be a key feature of both xylem and phloem long-distance transport architectures.  相似文献   

8.
Water movement between cells in a plant body is the basic phenomenon of plant solute transport; however, it has not been well documented due to limitations in observational techniques. This paper reports a visualization technique to observe water movement among plant cells in different tissues using a time of flight-secondary ion mass spectrometry (Tof-SIMS) cryo-system. The specific purpose of this study is to examine the route of water supply from xylem to stem tissues. The maximum resolution of Tof-SIMS imaging was 1.8 μm (defined as the three pixel step length), which allowed detection of water movement at the cellular level. Deuterium-labelled water was found in xylem vessels in the stem 2.5 min after the uptake of labelled water by soybean plants. The water moved from the xylem to the phloem, cambium, and cortex tissues within 30-60 min after water absorption. Deuterium ion counts in the phloem complex were slightly higher than those in the cortex and cambium tissue seen in enlarged images of stem cell tissue during high transpiration. However, deuterium ion counts in the phloem were lower than those in the cambium at night with no evaporative demand. These results indicate that the stem tissues do not receive water directly from the xylem, but rather from the phloem, during high evaporative demand. In contrast, xylem water would be directly supplied to the growing sink during the night without evaporative demand.  相似文献   

9.
Carbon and water balances for young fruits of platyopuntias   总被引:1,自引:0,他引:1  
Questions relating to transpired versus retained water for fruits, the xylem versus the phloem as water supplier to the fruits, and the importance of fruit photosynthesis for fruit dry mass gain were examined in the field for 6 species of platyopuntias ( Nopalea cochenillifera , Opuntia ficus-indica , O. megacantha , O. robusta , O. streptacantha and O. undulata ), cacti with flattened stem segments (cladodes). For plants with fruits midway between floral bud appearance and fruit maturation, transpiration was greater at night for the cladodes, as expected for Crassulacean acid metabolism (CAM) plants, but greater during the daytime for the fruits of all 6 species. Nevertheless, net CO2 uptake by fruits of these platyopuntias occurred predominantly at night, as expected for CAM plants. The water potential of the young fruits (average of −0.41 MPa) was higher than that of the cladodes (average of −0.60 MPa), indicating that water entered the fruits via the phloem rather than via the xylem. Solution entry into the fruits via the phloem supplied the water lost by transpiration and allowed for increases in fruit fresh mass (daily transpiration averaged 3.2-fold higher than daily water content increases), while the accumulating solutes were apparently polymerized to account for the higher water potentials of the fruits compared with the cladodes. The phloem thus acts as the sole supplier of water and the main supplier of dry mass (90%) to such young fruits of platyopuntias.  相似文献   

10.
Levels of monoterpene cyclase activity were determined in extracts from wounded and unwounded saplings of 10 conifer species to assess whether oleoresin biosynthesis is induced by stem wounding. Species of Abies and Picea, with low to moderate levels of constitutive monoterpene cyclase activity, exhibited a five- to 15-fold increase in cyclase activity 7 days after wounding relative to unwounded controls. In contrast, species of genera such as Pinus, with high levels of constitutive cyclase activity, did not significantly respond to wounding by alteration in the level of cyclase activity. The highest fold increase in monoterpene cyclase activity was consistently observed in Abies grandis, and the time-course of induction of activity following stem wounding in this species demonstrated a threefold increase at 2 days relative to unwounded controls, rising to a maximum increase in the response at 9 days (greater than 10-fold) followed by an apparent decline. The wound response was localized, and both bark (phloem) and wood (xylem) tissues displayed increased cyclase activity at the wound site. The magnitude of the increase in cyclase activity was dependent on the severity of the wound.  相似文献   

11.
The mechanism of freezing injury in xylem of winter apple twigs   总被引:7,自引:4,他引:3       下载免费PDF全文
In acclimated winter twigs of Haralson apple (Pyrus Malus L.), a lag in temperature during cooling at a constant rate was observed at about −41 C by differential thermal analysis. The temperature at which this low temperature exotherm occurred was essentially unaffected by the cooling rate. During thawing there was no lag in temperature (endotherm) near the temperature at which the low temperature exotherm occurred, but upon subsequent refreezing the exotherm reappeared at a somewhat higher temperature when twigs were rewarmed to at least −5 C before refreezing. These observations indicate that a small fraction of water may remain unfrozen to as low as −42 C after freezing of the bulk water in stems. The low temperature exotherm was not present in twigs freeze-dried to a water content below 8.5% (per unit fresh weight), but it reappeared when twigs were rehydrated to 20% water. When freeze-dried twigs were ground to a fine powder prior to rehydration, no exotherm was observed. Previous work has shown that the low temperature exotherm arises from xylem and pith tissues, and that injury to living cells in these tissues invariably occurs only when twigs are cooled below, but not above the temperature of the low temperature exotherm. This study revealed that the low temperature exotherm resulted from the freezing of a water fraction, that the freezing of this water was independent of the freezing of the bulk water, that the exotherm was associated with some gross structural feature but not the viability of the tissue, and that injury to living cells in the xylem and pith was closely and perhaps causally related to the initial freezing of this water.  相似文献   

12.
Total plate counts were determined on boneless cooked, cubed chicken meat obtained from a commercial processor. Survival of the natural flora was determined after the meat was freeze-dehydrated and rehydrated at room temperature for 30 min and 50, 85, and 100 C for 10 min. Total counts of bacteria in the rehydrated samples were determined during storage of the meat at 4, 22, and 37 C until spoilage odor was detectable. Meat samples were inoculated with Staphylococcus aureus, then dried, rehydrated, and stored at the same temperatures. Numbers of surviving organisms in the inoculated samples were determined with use of both selective and nonselective media. Representative genera surviving the various rehydration treatments were determined. Approximately 32% of the bacteria in the meat survived during dehydration and rehydration at room temperature. Many numbers and types of vegetative bacteria also survived rehydration at 50 C. When meat was rehydrated at 85 or 100 C, the initial count was less than one per gram. The only organisms isolated from samples rehydrated at 85 or 100 C were of the genus Bacillus. S. aureus in inoculated samples survived dehydration and rehydration at 60 C. Storage of all rehydrated samples at 4 C gave a good shelf life (18 or more days). The study indicates that freeze-dehydrated meat should be produced with adequate microbiological control and that such meat should be rehydrated in very hot water.  相似文献   

13.
Vibrio vulnificus, an important food-borne pathogen, is known to enter viable but nonculturable (VBNC) state under low temperature and low nutrition stress conditions. Present study examined the time required for induction of VBNC state and temperature which induces resuscitation of V. vulnificus YJ016. The change in cell morphology and gene expression during VBNC state and in resuscitated cells was also examined. V. vulnificus incubated in artificial sea water at 4 °C entered VBNC state after considerably extended time (70 days). An increase in temperature by 6 °C from the VBNC induction temperature (4 °C) resulted in resuscitation of VBNC cells; however, maximum resuscitation was observed when VBNC cells were held at 23 °C for 24 h. VBNC cells changed their morphology from comma shape to coccoid shape. Two rounds of induction of VBNC and resuscitation were possible with V. vulnificus cells; however, there was progressive reduction in number of resuscitated cells and after 190 days cells failed to resuscitate. Significant up-regulation of genes related to membrane proteins [porinH (10.4-fold), ompU (2.9-fold)], regulatory proteins [envZ (5.6-fold), toxR (4.5-fold), toxS (4.8-fold)], oxidative stress related protein katG (2.3-fold), cell division/maintenance proteins [ftsZ (4.3), mreB (6.5-fold)] and resuscitating promoter factor yeaZ (fourfold) was observed during resuscitation with respect to VBNC state indicating that these genes play a role during resuscitation. Gene expression data presented here would enhance our understanding of resuscitation of V. vulnificus from VBNC state. The results also highlight the importance of maintenance of low temperature during storage of seafood.  相似文献   

14.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

15.
通过测定亚热带马尾松和杉木树干韧皮部水溶性糖δ13C值的连日变化,及其对天气变化过程的响应,研究δ13C值对短期天气变化动态的响应特征。结果显示,春季马尾松和杉木树干韧皮部水溶性糖δ13C日均值分别介于-26.81‰到-26.49‰之间,以及-29.26‰到-27.47‰之间,平均值分别为(-26.58±0.12)‰和(-28.67±0.65)‰。进一步分析表明,马尾松树干韧皮部水溶性糖δ13C值与取样之前第4天的太阳辐射、水气压亏缺、相对湿度和空气温度显著相关(P≤0.05),杉木树干韧皮部水溶性糖δ13C值取样之前第3天的太阳辐射、水气压亏缺和相对湿度显著相关(P≤0.05),但与空气温度的相关性不显著(P≤0.05)。在所测定的环境因子中,太阳辐射是影响马尾松和杉木树干韧皮部水溶性糖δ13C值的首要因素。当天降水事件可能导致马尾松和杉木树干韧皮部水溶性糖δ13C值连日变化出现异常波动。马尾松和杉木韧皮部水溶性糖δ13C值可以敏感记录短期天气变化动态。  相似文献   

16.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

17.
Callose accumulated in the tissues of boron deficient bean and cotton plants, the extent and distribution of which depended on the species. Sieve plates in the phloem of boron deficient bean were characterized by heavy plugs of callose, while the sieve plates of boron deficient cotton were essentially unaffected. Translocation of 14C was, however, drastically reduced in both plants. It is suggested that callose deposition in boron deficient plants is a secondary effect of cellular damage.  相似文献   

18.
Jaeger, C. H., Goeschl, J. D., Magnuson, C. E., Fares, Y. and Strain, B. R. 1988. Short-term responses of phloem transport to mechanical perturbation. - Physiol. Plant. 72: 588–594.
Phloem transport was monitored using a continuous stream of 11CO2-labelled air administered to one leaf while gamma detectors measured 11C activity at intervals along the stem. The effect of gentle, non-injurious mechanical perturbation on phloem transport was tested in cotton ( Gossypium hirsutum L. cv. Stoneville 213). Mechanical stimuli such as shaking, localized vibration and gentle massage were applied while the plants were at isotope equilibrium. Localized phloem blockages were observed within 1–2 min of the stimuli. The blockages lasted from 6–55 min and full recovery of transport required 20–175 min. The effect of preconditioning to mechanical perturbation on phloem transport was tested in bush beans ( Phaseolus vulgaris L. cv. Cherokee Bush). Preconditioning of a bean seedling to gentle stem massage resulted in a shorter blockage response and quicker transport recovery period when the seedling was massaged during a 11C tracer experiment compared to a control seedling. These results indicate that measurements of phloem transport on recently disturbed plants will probably show depressed phloem transport velocities. Measurements should be made after at least a 24-h disturbance-free recovery period.  相似文献   

19.
Various methods have been tried to prevent cell mortality during dehydration, but the reasons why microorganisms die when submitted to dehydration and rehydration are not well understood. The aim of this study was to further investigate the reasons for yeast mortality during dehydration. Osmotic dehydration and rehydration of Saccharomyces cerevisiae W303-1A were performed at different temperatures. Two different approaches were used: isothermic treatments (dehydration and rehydration at the same temperature), and cyclic treatments (dehydration at an experimental temperature and rehydration at 25 degrees C), with significant differences in viability found between the different treatments. Dehydration at lower and higher temperatures gave higher viability results. These experiments allowed us to propose a hypothesis that relates mortality to a high water flow through an unstable membrane during phase transition.  相似文献   

20.
In response to suboptimal temperatures, temperate annual plants often increase root:shoot ratios, build-up carbohydrates and display typical morphological and anatomical changes. We know less about the responses of biennials such as carrot. As a model plant, carrot has the additional feature of two functionally and morphologically distinct root parts: the taproot, which stores carbohydrate and other compounds, and the fibrous root system involved in acquisition of water and nutrients. Here, we analyze the effects of temperature (12 vs 25°C) on growth, carbohydrate accumulation and whole-plant morphology in two carrot cultivars. Our working hypothesis is that suboptimal temperature favors active formation of reserve structures, rather than passive accumulation of storage carbohydrates. In comparison with plants grown at 25°C, plants grown at 12°C had: (1) higher fibrous root:shoot ratio (13%) , (2) thicker (10–15%) and smaller (up to two- to three-fold) leaves, (3) lower leaf cuticular permeance (two- to four-fold), (4) higher taproot:shoot ratio (two-fold), (5) higher phloem:xylem ratios in taproot (two- to six-fold), (6) unchanged percentage dry matter content (%DMC) in leaves, petioles or fibrous roots and (7) higher %DMC in taproot (20%). However, %DMC of individual taproot tissues (phloem and xylem) was unaffected by temperatures and was consistently higher in the phloem (up to 30%). Therefore, the higher %DMC of whole taproots at 12°C was attributed solely to the increased development of phloem tissue. Carrot, therefore, shares many of the most conspicuous elements of temperate plant responses to low temperatures. Consistently with our hypothesis, however, carrots grown at suboptimal temperature promoted reserve structures, rather than the increase in carbohydrate concentration typical of most temperate annual species and woody perennials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号