首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.  相似文献   

2.
The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish, on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6 weeks, followed by 24 weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed state using stable isotope methods and compartmental modeling at the end of each phase. Only the high-fish diet decreased median triglyceride-rich lipoprotein (TRL) apoB-100 concentration (-23%), production rate (PR, -9%), and direct catabolism (-53%), and increased TRL-to-LDL apoB-100 conversion (+39%) as compared with the baseline diet (all P < 0.05). This diet also decreased TRL apoB-48 concentration (-24%), fractional catabolic rate (FCR, -20%), and PR (-50%) as compared with the baseline diet (all P < 0.05). The high-fish and low-fish diets decreased LDL apoB-100 concentration (-9%, -23%), increased LDL apoB-100 FCR (+44%, +48%), and decreased HDL apoA-I concentration (-15%, -14%) and PR (-11%, -12%) as compared with the baseline diet (all P < 0.05). On the high-fish diet, changes in TRL apoB-100 PR were negatively correlated with changes in plasma eicosapentaenoic and docosahexaenoic acids. In conclusion, the high-fish diet decreased TRL apoB-100 and TRL apoB-48 concentrations chiefly by decreasing their PR. Both diets decreased LDL apoB-100 concentration by increasing LDL apoB-100 FCR and decreased HDL apoA-I concentration by decreasing HDL apoA-I PR.  相似文献   

3.
Although editing of apolipoprotein (apo)B in the small intestine, yielding apoB-48, is thought to be nearly complete in adult humans, small amounts of intestinal apoB-100 may also be produced. We have evaluated the fraction of unedited apoB secreted from the intestine postprandially in subjects with primary combined hyperlipidemia, a disorder in which secretion of apoB-100 into the blood is increased. Three hours after these subjects and healthy controls were fed a fat-rich meal containing retinol, the distribution of retinyl esters (RE) between plasma triglyceride-rich lipoprotein (TRL) fractions containing apoB-100 and apoB-48 was measured under conditions minimizing transfer of RE between lipoprotein particles. The estimated maximal percentage of unedited intestinal apoB-100 (approximately 3%) was not increased in subjects with primary combined hyperlipidemia, suggesting that reduced editing of intestinal mRNA does not contribute to the pathogenesis of this disorder. Postprandially, the triglyceride content of TRL containing apoB-48 more than doubled, leading to a 20% increase in mean diameter, yet the surface concentration of phospholipids and soluble apolipoproteins (apoE and total apoC) was unchanged. Furthermore, the surface concentrations of these components did not differ among TRL containing apoB-48 and two smaller fractions of apoB-100 TRL with distinct immunoreactivities. These findings suggest that available surface area is a major determinant of the particle content of each of these surface components of TRL species of differing size and origin.  相似文献   

4.
The effect of alloxan-induced insulin deficiency on high density lipoprotein (HDL) metabolism was studied in rabbits. Rabbits with alloxan-induced diabetes had significantly higher (P less than 0.001, mean +/- SEM) plasma concentrations of glucose (541 +/- 13 vs. 130 +/- 2 mg/dl), triglyceride (2851 +/- 332 vs. 101 +/- 10 mg/dl), and total plasma cholesterol (228 +/- 55 vs. 42 +/- 4 mg/dl) than did normal control rabbits. However, diabetic rabbits had lower plasma HDL-cholesterol (7.2 +/- 1 vs. 51.3 +/- 1.3 mg/dl, P less than 0.001) and HDL apoA-I (38.3 +/- 6.0 vs. 87.2 +/- 4.3 mg/dl, P less than 0.001) concentrations. HDL kinetics were compared in diabetic and normal rabbits, using either 125I-labeled HDL or HDL labeled with 125I-labeled apoA-I, and it was demonstrated that HDL fractional catabolic rate (FCR) was slower and residence time was longer in the diabetic rabbits when either tracer was used. The slow FCR and the low apoA-I pool size led to reduced apoA-I/HDL synthetic rate in diabetic rabbits (0.97 +/- 0.11 vs. 0.34 +/- 0.07 mg per kg per hr). Thus, the reduced plasma HDL-cholesterol concentrations seen in rabbits with alloxan-induced insulin deficiency was associated with a lower total apoA-I/HDL synthetic rate. Since insulin treatment restored to normal all of the changes in plasma lipoprotein concentration and kinetics seen in diabetic rabbits, it is unlikely that the phenomena observed were secondary to a nonspecific toxic effect of alloxan. These data strongly support the view that insulin plays an important role in regulation of HDL metabolism.  相似文献   

5.
The present study was undertaken to elucidate the metabolic basis for the increased remnants and lipoprotein(a) [Lp(a)] and decreased LDL apolipoprotein B (apoB) levels in human apoE deficiency. A primed constant infusion of (13)C(6)-phenylalanine was administered to a homozygous apoE-deficient subject. apoB-100 and apoB-48 were isolated, and tracer enrichments were determined by gas chromatography-mass spectrometry, then kinetic parameters were calculated by multicompartmental modeling. In the apoE-deficient subject, fractional catabolic rates (FCRs) of apoB-100 in VLDL and intermediate density lipoprotein and apoB-48 in VLDL were 3x, 12x, and 12x slower than those of controls. On the other hand, the LDL apoB-100 FCR was increased by 2.6x. The production rate of VLDL apoB-100 was decreased by 45%. In the Lp(a) kinetic study, two types of Lp(a) were isolated from plasma with apoE deficiency: buoyant and normal Lp(a). (125)I-buoyant Lp(a) was catabolized at a slower rate in the patient. However, (125)I-buoyant Lp(a) was catabolized at twice as fast as (131)I-normal Lp(a) in the control subjects. In summary, apoE deficiency results in: 1) a markedly impaired catabolism of VLDL/chylomicron and their remnants due to lack of direct removal and impaired lipolysis; 2) an increased rate of catabolism of LDL apoB-100, likely due to upregulation of LDL receptor activity; 3) reduced VLDL apoB production; and 4) a delayed catabolism of a portion of Lp(a).  相似文献   

6.
Patients with type 2 diabetes have high levels of triglyceride-rich lipoproteins (TRLs), including apolipoprotein B-48 (apoB-48)-containing TRLs of intestinal origin, but the mechanism leading to overaccumulation of these lipoproteins remains to be fully elucidated. Therefore, the objective of this study was to examine the in vivo kinetics of TRL apoB-48 and VLDL, intermediate density lipoprotein (IDL), and LDL apoB-100 in type 2 diabetic subjects (n = 11) and nondiabetic controls (n = 13) using a primed-constant infusion of l-[5,5,5-D(3)]leucine for 12 h in the fed state. Diabetic subjects had significantly higher fasting glycemia, higher fasting insulinemia, higher plasma triglyceride, and lower HDL-cholesterol levels than controls. Compared with controls, diabetic subjects had increased TRL apoB-48, VLDL apoB-100, and IDL apoB-100 pool sizes as a result of increased production rates (PRs) and reduced fractional catabolic rates of these lipoprotein subfractions. Furthermore, multiple linear regression analyses revealed that the diabetic/control status was an independent predictor of TRL apoB-48 PR and represented nearly 35% of its variance. These results suggest that the overaccumulation of TRLs seen in patients with type 2 diabetes is attributable to increased PRs of both intestinally derived apoB-48-containing lipoproteins and TRL apoB-100 of hepatic origin and to decreased catabolism of these subfractions.  相似文献   

7.
Sixteen hyperlipidemic men were enrolled in a randomized, placebo-controlled, double-blind, cross-over study to evaluate the effect of ezetimibe 10 mg and simvastatin 40 mg, coadministered and alone, on the in vivo kinetics of apolipoprotein (apo) B-48 and B-100 in humans. Subjects underwent a primed-constant infusion of a stable isotope in the fed state. The coadministration of simvastatin and ezetimibe significantly reduced plasma concentrations of cholesterol (−43.0%), LDL-C (−53.6%), and triglycerides (−44.0%). Triglyceride-rich lipoproteins (TRL) apoB-48 pool size (PS) was significantly decreased (−48.9%) following combination therapy mainly through a significant reduction in TRL apoB-48 production rate (PR) (−38.0%). The fractional catabolic rate (FCR) of VLDL and LDL apoB-100 were significantly increased with all treatment modalities compared with placebo, leading to a significant reduction in the PS of these fractions. We also observed a positive correlation between changes in TRL apoB-48 PS and changes in TRL apoB-48 PR (r = 0.85; P < 0.0001) with combination therapy. Our results indicate that treatment with simvastatin plus ezetimibe is effective in reducing plasma TRL apoB-48 levels and that this effect is most likely mediated by a reduction in the intestinal secretion of TRL apoB-48. Our study also indicated that the reduction in LDL-C concentration following combination therapy is mainly driven by an increase in FCR of apoB-100 containing lipoproteins.  相似文献   

8.
We have used an extraction procedure, which released membrane-bound apoB-100, to study the assembly of apoB-48 VLDL (very low density lipoproteins). This procedure released apoB-48, but not integral membrane proteins, from microsomes of McA-RH7777 cells. Upon gradient ultracentrifugation, the extracted apoB-48 migrated in the same position as the dense apoB-48-containing lipoprotein (apoB-48 HDL (high density lipoprotein)) secreted into the medium. Labeling studies with [(3)H]glycerol demonstrated that the HDL-like particle extracted from the microsomes contains both triglycerides and phosphatidylcholine. The estimated molar ratio between triglyceride and phosphatidylcholine was 0.70 +/- 0.09, supporting the possibility that the particle has a neutral lipid core. Pulse-chase experiments indicated that microsomal apoB-48 HDL can either be secreted as apoB-48 HDL or converted to apoB-48 VLDL. These results support the two-step model of VLDL assembly. To determine the size of apoB required to assemble HDL and VLDL, we produced apoB polypeptides of various lengths and followed their ability to assemble VLDL. Small amounts of apoB-40 were associated with VLDL, but most of the nascent chains associated with VLDL ranged from apoB-48 to apoB-100. Thus, efficient VLDL assembly requires apoB chains of at least apoB-48 size. Nascent polypeptides as small as apoB-20 were associated with particles in the HDL density range. Thus, the structural requirements of apoB to form HDL-like first-step particles differ from those to form second-step VLDL. Analysis of proteins in the d < 1.006 g/ml fraction after ultracentrifugation of the luminal content of the cells identified five chaperone proteins: binding protein, protein disulfide isomerase, calcium-binding protein 2, calreticulin, and glucose regulatory protein 94. Thus, intracellular VLDL is associated with a network of chaperones involved in protein folding. Pulse-chase and subcellular fractionation studies showed that apoB-48 VLDL did not accumulate in the rough endoplasmic reticulum. This finding indicates either that the two steps of apoB lipoprotein assembly occur in different compartment or that the assembled VLDL is transferred rapidly out of the rough endoplasmic reticulum.  相似文献   

9.
A primed-constant infusion of deuterated leucine was used in humans to determine the maximal level of enrichment at plateau of apolipoprotein (apo)B-48 and apoB-100 which are synthesized in the intestine and liver, respectively, and to compare the kinetics of these two proteins under identical conditions. Eight normal subjects (four post-menopausal females and four males) over the age of 40 were studied in the constantly fed state over a 20-h period by providing small hourly feedings of identical composition. [5,5,5-2H3]Leucine (10 mumol/kg body weight followed by 10 mumol/kg body weight per hour) was infused over 15 h intravenously. The enrichment of deuterated leucine in apoB-48 and apoB-100 triglyceride-rich lipoproteins isolated by ultracentrifugation (d less than 1.006 g/ml) was determined during the entire infusion period. The plateau level of enrichment in triglyceride-rich lipoprotein apoB-48 was 3.96 +/- 1.41 tracer/tracee ratio (%) which was 39.7% of the plasma leucine enrichment level. The plateau level of enrichment in triglyceride-rich lipoprotein apoB-100 was 7.23 +/- 1.17 tracer/tracee ratio (%) which was 72.5% of the plasma leucine enrichment level. Mean fractional secretion rates of triglyceride-rich lipoprotein apoB-48 and apoB-100 were 4.39 +/- 2.00 and 5.39 +/- 1.98 pools per day, respectively, with estimated residence times of 5.47 and 4.45 hours, respectively. The data indicate that in the fed state there is about a twofold difference in the plateau enrichment of an intestinally derived protein, as compared to one of hepatic origin, most likely attributable to differences in the enrichment of the intracellular leucine in the two organs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Phospholipid transfer protein gene knock-out (Pltp KO) mice have defective transfer of very low density lipoprotein (VLDL) phospholipids into high density lipoprotein (HDL) and markedly decreased HDL levels (Jiang et al. 1999. J. Clin. Invest. 103: 907-914). These animals also accumulated VLDL- and LDL-sized lipoproteins on a high saturated fat diet. The goals of this study were to further characterize the abnormal lipoproteins of Pltp KO mice and to determine the mechanisms responsible for low HDL levels. A lipoprotein fraction enriched in lamellar structures was isolated from the low density lipoprotein (LDL) region and was shown to be phospholipid- and free cholesterol-rich and to have apoA-IV (55%) and apoE (25%) as major apolipoproteins. The lamellar lipoproteins accumulating in these mice probably represent surface material derived from triglyceride-rich lipoproteins (TRL). The HDL was found to be protein-rich (primarily apoA-I) and specifically depleted in phosphatidylcholine (PC) (28% in wild-type mice (WT) vs. 15% in Pltp KO mice, P < 0.001). Unexpectedly, turnover studies using autologous HDL revealed a profound 4-fold increase in the catabolism of HDL protein and cholesteryl ester in Pltp KO mice compared to wild-type, with minor differences in synthesis rates. In contrast, injection of WT mouse HDL into Pltp KO mice showed only a 2-fold increase in fractional catabolism. Reminiscent of the defect in Tangier disease, the failure of transfer of PC from TRL into the HDL fraction results in dramatic hypercatabolism of HDL. These results suggest that defective phospholipid transfer from TRL into HDL, arising from decreased lipolysis or decreased PLTP activity, could lead to hypoalphalipoproteinemia characterized by hypercatabolism of HDL protein. lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins.  相似文献   

11.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo.  相似文献   

12.
The assembly of very low density lipoproteins (VLDL) by hepatocytes is believed to occur via a two-step process. The first step is the formation of a dense phospholipid and protein-rich particle that is believed to be converted to VLDL by the addition of bulk triglyceride in a second step. Previous studies in our laboratory led us to hypothesize a third assembly step that occurs in route to or in the Golgi apparatus. To investigate this hypothesis, nascent lipoproteins were recovered from Golgi apparatus-rich fractions isolated from mouse liver. The Golgi fractions were enriched 125-fold in galactosyltransferase and contained lipoprotein particles averaging approximately 35 nm in diameter. These lipoproteins were separated by ultracentrifugation into two fractions: d < 1.006 g/ml and d1.006;-1.210 g/ml. The d < 1.006 g/ml fraction contained apolipoprotein B-100 (apoB-100), apoB-48, and apoE, while the d1.006;-1.210 g/ml fraction contained these three apoproteins as well as apoA-I and apoA-IV. Both fractions contained a 21-kDa protein that was isolated and sequenced and identified as major urinary protein. Approximately 50% of the apoB was recovered with the denser fraction. To determine if these small, dense lipoproteins were secreted without further addition of lipid, mice were injected with Triton WR1339 and [(3)H]leucine, and the secretion of apoB-100 and apoB-48 into serum VLDL (d < 1.006 g/ml) and d1.006;-1.210 g/ml fractions was monitored over a 2-h period. More than 80% of the newly synthesized apoB-48 and nearly 100% of the apoB-100 were secreted with VLDL. These studies provide the first characterization of nascent lipoproteins recovered from the Golgi apparatus of mouse liver. We conclude that these nascent hepatic Golgi lipoproteins represent a heterogeneous population of particles including VLDL as well as a population of small, dense lipoproteins. The finding of the latter particles, coupled with the demonstration that the primary secretory product of mouse liver is VLDL, suggests that lipid may be added to nascent lipoproteins within the Golgi apparatus.  相似文献   

13.
Previously, we have shown, in vivo, that the acyl coenzyme A: cholesterol acyltransferase (ACAT) inhibitor avasimibe decreases hepatic apolipoprotein (apo) B secretion into plasma. To test the hypothesis that avasimibe modulates postprandial triglyceride-rich lipoprotein (TRL) metabolism in vivo, an oral fat load (2 g fat/kg) containing retinol was given to 9 control miniature pigs and to 9 animals after 28 days treatment with avasimibe (10 mg/kg/day, n=5; 25 mg/kg/day, n=4). The kinetic parameters for plasma retinyl palmitate (RP) metabolism were determined by multi-compartmental modeling using SAAM II. Avasimibe decreased the 2-h TRL (d<1.006 g/mL; S(f)>20) triglyceride concentrations by 34%. The TRL triglyceride 0-12 h area under the curve (AUC) was decreased by 21%. In contrast, avasimibe had no effect on peak TRL RP concentrations, time to peak, or its rate of appearance into plasma, however, the TRL RP 0-12 h AUC was decreased by 17%. Analysis of the RP kinetic parameters revealed that the TRL fractional clearance rate (FCR) was increased 1.4-fold with avasimibe. The TRL RP FCR was negatively correlated with very low density lipoprotein (VLDL) apoB production rate measured in the fasting state (r=-0.504). No significant changes in total intestinal lipid concentrations were observed. Thus, although avasimibe had no effect on intestinal TRL secretion, plasma TRL clearance was significantly increased; an effect that may relate to a decreased competition with hepatic VLDL for removal processes.  相似文献   

14.
Lesion-free areas of aortic intimas from seven men, 30 to 49 years old, were extracted with aqueous buffer within a few hours after an accidental or sudden death. Two lipoprotein fractions could be isolated by density gradient ultracentrifugation from all cases. The mean composition of fraction I (d less than 1.012 g/ml) resembled that reported for the cholesteryl ester-rich, beta-migrating very low density lipoprotein (beta-VLDL); the composition of fraction II (d 1.021-1.046 g/ml) resembled that of plasma low density lipoprotein (LDL). Mean diameter of the particles was 35 +/- 8 nm in fraction I and 25 +/- 5 nm in fraction II (22 +/- 2 nm in plasma LDL). Both fractions contained apolipoproteins B (apoB) and E (apoE), and had increased electrophoretic mobilities and reduced contents of linoleic acid. The immunoreactivity of apoB to a polyclonal and two monoclonal antibodies in both fractions was not different from that of plasma lipoproteins. The apoE isoform patterns in both fractions were similar to those obtained from the respective postmortem plasmas. When incubated with mouse peritoneal macrophages, fractions I and II enhanced the incorporation of radioactive oleate into cholesteryl esters by 10- to 20-fold and 3- to 4-fold, respectively, in comparison to plasma LDL. In conclusion, our results indicate that lesion-free human aortic intima contains two types of apoB- and apoE-containing lipoprotein particles, both of which might be potentially atherogenic.  相似文献   

15.
The production rates of apolipoprotein (apo)B-100 in very low density lipoprotein and in low density lipoprotein and apolipoprotein A-I in high density lipoprotein were determined using a primed-constant infusion of [5,5,5,-2H3]leucine, [4,4,4,-2H3]valine, and [6,6-2H2,1,2-13C2]lysine. The three stable isotope-labeled amino acids were administered simultaneously to determine whether absolute production rates calculated using a stochastic model were independent of the tracer species utilized. Three normolipidemic adult males were studied in the constantly fed state over a 15-h period. The absolute production rates of very low density lipoprotein apoB-100 were 11.4 +/- 5.8 (leucine), 11.2 +/- 6.8 (valine), and 11.1 +/- 5.4 (lysine) mg per kg per day (mean +/- SDM). The absolute production rates for low density lipoprotein apoB-100 were 8.0 +/- 4.7 (leucine), 7.5 +/- 3.8 (valine), and 7.5 +/- 4.2 (lysine) mg per kg per day. The absolute production rates for high density lipoprotein apoA-I were 9.7 +/- 0.2 (leucine), 9.4 +/- 1.7 (valine, and 9.1 +/- 1.3 (lysine) mg per kg per day. There were no statistically significant differences in absolute synthetic rates of the three apolipoproteins when the plateau isotopic enrichment values of very low density lipoprotein apoB-100 were used to define the isotopic enrichment of the intracellular precursor pool. Our data indicate that deuterated leucine, valine, or lysine provided similar results when used for the determination of apoA-I and apoB-100 absolute production rates within plasma lipoproteins as part of a primed-constant infusion protocol.  相似文献   

16.
The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  相似文献   

17.
Twenty two subjects (9 males, 13 females) were fed a fat-rich meal (1 g of fat/kg body weight). Triglyceride-rich lipoproteins (TRL) were isolated by ultracentrifugation (d less than 1.006 g/ml) from blood drawn 0, 3, 6, 9, and 12 hr after the meal. Plasma triglyceride increased then decreased postprandially, while plasma apoA-I and apoB concentrations decreased. TRL triglyceride, TRL total protein, and TRL apoB concentrations all increased then decreased after the fat-rich meal. Postprandial rise in plasma triglyceride was significantly correlated with fasting plasma triglyceride levels (r = 0.66, P less than 0.001); postprandial rise in TRL triglyceride was significantly correlated with fasting TRL triglyceride levels (r = 0.58, P less than 0.01); postprandial rise in TRL apoB was not, however, significantly correlated with fasting TRL apoB levels (r = 0.37, N.S.). TRL apolipoproteins were separated by polyacrylamide gradient (4-22.5%) gel electrophoresis and protein bands were scanned in two dimensions with a laser densitometer. Relative postprandial changes in the concentration of the TRL apolipoproteins were determined. TRL apoB-100, apoB-48, apoE, and apoC increased then decreased postprandially. The increase in TRL apoB-100 after the fat-rich meal was confirmed in 8 subjects by direct measurement of apoB-100 with a monoclonal antibody ELISA assay. ApoA-I concentration in TRL was unchanged. Albumin in the TRL fraction was significantly increased 12 hr after the meal. Subjects with a greater magnitude of postprandial triglyceridemia had a greater increase in TRL triglyceride and TRL apoB, but their TRL apoB-100/apoB-48 ratios were not different from subjects with less pronounced triglyceridemia. Assuming that plasma TRL containing apoB-100 are predominantly derived from the liver, our data suggest that triglyceride-rich lipoproteins from both the liver and intestine make a significant contribution to postprandial triglyceridemia.  相似文献   

18.
Heterozygous familial hypercholesterolemia (FH) is associated with a moderate decrease of plasma apoA-I and HDL-cholesterol levels. The aim of the study was to test the hypothesis that these abnormalities were related to an increase of HDL-apoA-I fractional catabolic rate (FCR). We performed a 14-h infusion of [5,5,5-(2)H(3)]leucine in seven control subjects and seven heterozygous FH patients (plasma total cholesterol 422 +/- 27 vs. 186 +/- 42 mg/dL, P < 0.001, respectively). Plasma apoA-I concentration was not changed in FH compared to controls (respectively 115 +/- 18 vs. 122 +/- 15 mg/dL, NS), and HDL-cholesterol level was decreased (37 +/- 7 vs. 46 +/- 19 mg/dL, NS). Kinetics of HDL metabolism were modeled as a single compartment as no differences were observed between HDL(2) and HDL(3) subclasses. Both mean apoA-I FCR and absolute production rate (APR) were increased in FH (respectively, 0.36 +/- 0.14 vs. 0.22 +/- 0.05 pool/d, P < 0.05, and 18.0 +/- 7.7 and 11.2 +/- 2.3 mg/kg/d, P < 0.05). Higher HDL-triglyceride and HDL-apoE levels were observed in patients with heterozygous FH. (Respectively 19 +/- 8 vs. 8 +/- 3 mg/dL, P < 0.05, and 5.3 +/- 0.8 vs. 3.7 +/- 0.9 mg/dL, P < 0.05). We conclude that the catabolism of HDL-apoA-I is increased in heterozygous FH patients. However, plasma apoA-I concentration was maintained because of an increased HDL-apoA-I production rate.  相似文献   

19.
Lipoprotein synthesis by the colonic adenocarcinoma cell line Caco-2 was investigated to assess the utility of this cell line as a model for the in vitro study of human intestinal lipid metabolism. Electron micrographic analysis of conditioned medium revealed that under basal conditions of culture post-confluent Caco-2 cells synthesize and secrete lipoprotein particles. Lipoproteins of density (d) less than 1.063 g/ml consist of a heterogeneous population of particles (diameter from 10 to 90 nm). This fraction consists of very low density lipoproteins (d less than 1.006 g/ml) and low density lipoproteins (d = 1.019-1.063 g/ml). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [35S]methionine-labeled Caco-2 lipoproteins revealed that very low density lipoproteins contain apolipoprotein E (apoE) and C apolipoproteins, while low density lipoproteins contained apoB-100, apoE, apoA-I, and C apolipoproteins. The 1.063-1.21 g/ml density fraction contained two morphological entities, discoidal (diameter 15.6 +/- 3.9 nm) and round high density lipoprotein particles (diameter 10.2 +/- 2.3 nm). The high density lipoproteins contained apoA-I, apoB-100, apoB-48, apoE, and the C apolipoproteins. Using isoelectric focusing polyacrylamide gel electrophoresis newly secreted apoA-I was identified as pro-apoA-I. ApoE and apoC-III released by Caco-2 cells were highly sialylated. mRNA species for apoA-I, apoC-III, and apoE, but not apoA-IV were identified by Northern blot analysis. ApoA-I, apoB, and apoE were visualized in Caco-2 cells by immunolocalization analysis. This intestinal cell line may be useful for in vitro studies of nutritional and hormonal regulation of lipoprotein synthesis.  相似文献   

20.
Previous studies have revealed the presence of transthyretin (TTR) on lipoproteins. To further address this issue, we fractionated plasma lipoproteins from 9 normal individuals, 10 familial amyloidotic polyneuropathy (FAP) patients, and 19 hyperlipidemic subjects using gel filtration. In the majority of the subjects, as well as in 9 of the 10 FAP patients and 14 of the 19 patients with hyperlipidemia, TTR was detected by ELISA in the high density lipoprotein (HDL) fraction. The presence of TTR in HDL was confirmed by direct sequencing and by immunoblotting; using non-reducing conditions, TTR was found by immunoblotting in a high molecular weight complex, which reacted also for apolipoprotein A-I (apoA-I). The amount of TTR present in HDL (HDL-TTR), as quantified by ELISA corresponded to 1;-2% of total plasma TTR. However, no detectable TTR levels were found in HDL fraction from 6 of the hyperlipidemic subjects. No correlation was found between the lack of TTR in HDL and plasma levels of total, LDL-, or HDL-associated cholesterol as well as levels of apoA-I and total plasma TTR. Ligand binding experiments showed that radiolabeled TTR binds to the HDL fraction of individuals with HDL-TTR but not to the corresponding fractions of individuals devoid of HDL-TTR, suggesting that HDL composition may interfere with TTR binding. The component(s) to which TTR binds in the HDL fraction were investigated. Polyclonal antibody against apoA-I was able to block the interaction of TTR with HDL, suggesting that the interaction of TTR with the HDL particle occurs via apoA-I. This hypothesis was further demonstrated by showing the formation of a complex of TTR with HDL and apoA-I by crosslinking experiments. Furthermore, anti-apoA-I immunoblot under native conditions suggested the existence of differences in HDL particle properties and/or stability between individuals with and without HDL-TTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号