首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors.

Methods

Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients. Arterial segments with and without endothelium were mounted in myographs and concentration-response curves for endothelin-1 were constructed in the absence and presence of selective and combined ETA and ETB receptor antagonists. Endothelin concentrations in culture medium and receptor expression were measured.

Results

Compared to the other groups, the following was observed in arteries exposed to cerebrospinal fluid from patients with vasospasm: 1) larger contractions at lower endothelin concentrations (p<0.05); 2) the increased endothelin contraction was absent in arteries without endothelium; 3) higher levels of endothelin secretion in the culture medium (p<0.05); 4) there was expression of ETA receptors and new expression of ETB receptors was apparent; 5) reduction in the enhanced response to endothelin after ETB blockade in the low range and after ETA blockade in the high range of endothelin concentrations; 6) after combined ETA and ETB blockade a complete inhibition of endothelin contraction was observed.

Conclusions

Our experimental findings showed that in intact rat basilar arteries exposed to cerebrospinal fluid from patients with vasospasm endothelin contraction was enhanced in an endothelium-dependent manner and was blocked by combined ETA and ETB receptor antagonism. Therefore we suggest that combined blockade of both receptors may play a role in counteracting vasospasm in patients with SAH.  相似文献   

2.
Pulmonary fibrosis is characterized by excessive extracellular matrix deposition with concomitant loss of gas exchange units, and endothelin-1 (ET-1) has been implicated in its pathogenesis. Increased levels of ET-1 from tissues and bronchoalveolar lavage have been reported in patients with pulmonary fibrosis and in animal models after intratracheal bleomycin. We characterized the cellular distribution of alveolar ET receptors by immunohistochemistry in bleomycin-induced pulmonary fibrosis in the rat and determined the regulation by bleomycin of ET receptor mRNA expression in isolated alveolar macrophages and rat lung fibroblasts. We found significant increases in the numbers of fibroblasts and macrophages at day 7 compared to day 28 and control animals. ETB receptor immunoreactivity was observed on fibroblasts and invading monocytes. Isolated fibroblasts expressed both ETA and ETB receptor mRNA, and ETA receptor mRNA was upregulated by bleomycin. Isolated resident alveolar macrophages expressed neither ETA nor ETB receptor mRNA which were also not induced by bleomycin. We conclude that, while ETB receptor stimulation of fibroblasts and monocytes recruited during bleomycin-induced lung injury exerts antagonistic effects on fibroblast collagen synthesis, the observed increase in the number of fibroblasts in vivo and upregulation of fibroblast ETA receptor mRNA by bleomycin in vitro point to a predominance of the profibrotic effects of ET receptor engagement.  相似文献   

3.
Endothelin-1 (ET-1) is the most potent vasoconstrictor by binding to endothelin receptors (ETAR) in vascular smooth muscle cells (VSMCs). The complex of angiotensin II (Ang II) and Ang II type one receptor (AT1R) acts as a transient constrictor of VSMCs. The synergistic effect of ET-1 and Ang II on blood pressure has been observed in rats; however, the underlying mechanism remains unclear. We hypothesize that Ang II leads to enhancing ET-1-mediated vasoconstriction through the activation of endothelin receptor in VSMCs. The ET-1-induced vasoconstriction, ET-1 binding, and endothelin receptor expression were explored in the isolated endothelium-denuded aortae and A-10 VSMCs. Ang II pretreatment enhanced ET-1-induced vasoconstriction and ET-1 binding to the aorta. Ang II enhanced ETAR expression, but not ETBR, in aorta and increased ET-1 binding, mainly to ETAR in A-10 VSMCs. Moreover, Ang II-enhanced ETAR expression was blunted and ET-1 binding was reduced by AT1R antagonism or by inhibitors of PKC or ERK individually. In conclusion, Ang II enhances ET-1-induced vasoconstriction by upregulating ETAR expression and ET-1/ETAR binding, which may be because of the AngII/Ang II receptor pathways and the activation of PKC or ERK. These findings suggest the synergistic effect of Ang II and ET-1 on the pathogenic development of hypertension.  相似文献   

4.

Background  

Endothelin-1 (ET-1) is a potent vasoactive peptide, which induces vasoconstriction and proliferation in vascular smooth muscle cells (VSMCs) through activation of endothelin type A (ETA) and type B (ETB) receptors. The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein kinases (MAPK) are involved in ET-1-induced VSMC contraction and proliferation. This study was designed to investigate the ETA and ETB receptor intracellular signaling in human VSMCs and used phosphorylation (activation) of ERK1/2 as a functional signal molecule for endothelin receptor activity.  相似文献   

5.
Endothelins, ET-1, ET-2, and ET-3 are potent vasoconstricting and mitogenic 21-amino acid bicyclic peptides, which exert their effects upon binding to the ETA and ETB receptors. The ETA receptor mediates vasoconstriction and smooth muscle cell proliferation, and the ETB receptor mediates different effects in different tissues, including nitric oxide release from endothelial cells, and vasoconstriction in certain vascular cell types. Selective antagonists of endothelin receptor subtypes may prove useful in determining the role of endothelin in various tissue types and disease states, and hence as therapeutic agents for such diseases. The pyrrolidine carboxylic acid A-127722 has been disclosed as a potent and ETA-selective antagonist, and is currently undergoing clinical trials. In our efforts to find antagonists with altered selectivity (ETA-selective, ETB-selective, or nonselective), we investigated the SAR of the 2-substituent on the pyrrolidine. Compounds with alkyl groups at the 2-position possessed ETA selectivity improved over A-127722 (1400-fold selective), with the best of these compounds showing nearly 19,000-fold selectivity.  相似文献   

6.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

7.
8.
Endothelin-1 (ET-1) mediates physiological responses via endothelin A (ETA) and B (ETB) receptors, which may form homo- and heterodimers with unknown function. Here, we investigated ET-receptor dimerization using fluorescence resonance energy transfer (FRET) between receptors tagged with CFP (donor) and receptors tagged with tetracysteine-FlAsH (fluorescein arsenical hairpin) (acceptor) expressed in HEK293 cells. FRET efficiencies were 15%, 22%, and 27% for ETA/ETA, ETB/ETB and ETA/ETB, respectively, and dimerization was further supported by coimmunoprecipitation. For all dimer pairs, the natural but nonselective ligand ET-1 rapidly (≤30 s) reduced FRET by >50%, but did not detectably reduce coimmunoprecipitation. ET-1 stimulated a transient increase in intracellular Ca2+ ([Ca2+]i) lasting 1-2 min for both homodimer pairs, and these ET-1 actions on FRET and [Ca2+]i elevation were blocked by the appropriate subtype-selective antagonist. In contrast, ETA/ETB heterodimers mediated a sustained [Ca2+]i increase lasting >10 min, and required a combination of ETA and ETB antagonists to block the observed FRET and [Ca2+]i responses. The sensitive CFP/FlAsH FRET assay used here provides new insights into endothelin-receptor dimer function, and represents a unique approach to characterize G-protein-coupled receptor oligomers, including their pharmacology.  相似文献   

9.
Endothelin is one of the most potent vasoconstrictors known. It plays an important role in the regulation of vascular tone and in the development of many cardiovascular diseases. This study focuses on the receptor types and the Ca2+ mobilization responsible for endothelin-1 (ET-1) contraction in de-endothelialized pig coronary artery rings. ET-1 contracted the artery rings with an EC50 = 6.5 ± 1 nM and a maximum contraction which was 98.6 ± 9% of the contraction produced by 60 mM KCl. BQ123 (5 µM), an ETA antagonist, reversed 78 ± 3% of the ET-1 contraction (50 nM). IRL1620, a selective ETB agonist, produced 23 ± 3% of the total ET-1 contraction with an EC50 = 12.7 ± 2 nM. More than 85% of the contraction due to 100 nM IRL 1620 was inhibited by 200 nMBQ788, an ETB antagonist. Therefore, approximately 80% of the ET-1 contraction in this artery occurred via ETA receptors, and the other 20% was mediated by ETB receptors. To assess the Ca2+ pools utilized during the ET-1 response, ET-1 contraction was also examined in medium containing an L-type Ca2+ channel blocker nitrendipine, and in Ca2+ free medium containing 0.2 mM EGTA. In Ca2+ containing medium the contraction elicited by ET-1 was 98.6 ± 9% of the KCl contraction, however, in the presence 10 µM nitrendipine the ET-1 induced contraction was 54 ± 7% of the KCl contraction, and in Ca2+-free medium it was 13 ± 2%. Similarly, the IRL 1620 contractions in Ca2+ containing medium, in the presence of nitrendipine and in Ca2+-free medium were 22.4 ± 3%, 12 ± 3% and 11 ± 2% of the KCl response respectively. Thus, both ETA and ETB contractions utilize extracellular Ca2+ pools via L-type Ca2+ channels and other undefined route(s), as well as intracellular Ca2+ pools. In the pig coronary artery smooth muscle, ET-1 contractions occur predominantly via ETA receptors, with ETB receptors using similar Ca2+ mobilization pathways, but the ETB receptors appear to use the intracellular Ca2+ stores to a greater extent.  相似文献   

10.
Cao L  Zhang Y  Cao YX  Edvinsson L  Xu CB 《PloS one》2012,7(3):e33008

Background

Cigarette smoking is a strong cardiovascular risk factor and endothelin (ET) receptors are related to coronary artery diseases. The present study established an in vivo secondhand smoke (SHS) exposure model and investigated the hypothesis that cigarette smoke induces ET receptor upregulation in rat coronary arteries and its possible underlying mechanisms.

Methodology/Principal Findings

Rats were exposed to SHS for 200 min daily for 8 weeks. The coronary arteries were isolated and examined. The vasoconstriction was studied by a sensitive myograph. The expression of mRNA and protein for receptors was examined by real-time PCR, Western blot and immunofluorescence. Compared to fresh air exposure, SHS increased contractile responses mediated by endothelin type A (ETA) and type B (ETB) receptors in coronary arteries. In parallel, the expression of mRNA and protein for ETA and ETB receptors of smoke exposed rats were higher than that of animals exposed to fresh air, suggesting that SHS upregulates ETA and ETB receptors in coronary arteries in vivo. Immunofluorescence staining showed that the enhanced receptor expression was localized to the smooth muscle cells of coronary arteries. The protein levels of phosphorylated (p)-Raf-1 and p-ERK1/2 in smoke exposed rats were significantly higher than in control rats, demonstrating that SHS induces the activation of the Raf/ERK/MAPK pathway. Treatment with Raf-1 inhibitor GW5074 suppressed SHS-induced enhanced contraction mediated by ETA receptors, and inhibited the elevated mRNA and protein levels of ETA and ETB receptors caused by SHS. The results of correlation and regression analysis showed that phosphorylation of Raf and ERK1/2 were independent determinants to affect protein expression of ETB and ETA receptors.

Conclusions/Significance

Cigarette smoke upregulates ETB and ETA receptors in rat coronary artery, which is associated with the activation of the Raf/ERK/MAPK pathway.  相似文献   

11.
Endothelin-1 (ET-1) induces contraction of vascular smooth muscle through binding to endothelin type A receptor (ETAR). COS-7 cells stably expressing high levels of the ETAR were established (designated COS-7(ETAR)). The COS-7(ETAR) cell bound [125I]ET-1 with a Kd of 932 ± 161 pM and a Bmax of 74 ± 13 fmol/2 × 105 cells. [125I]ET-1 binding was inhibited by ET-1 and the ETAR antagonist BQ-610, but not by the endothelin type B receptor (ETBR) antagonist BQ-788. In clones expressing two ETAR mutants containing D46N or R53Q substitutions in the first extracellular domain of the receptor, [125I]ET-1 binding activity was dramatically reduced. This suggests that these single amino acid substitutions alter the three-dimensional structure of the ligand-binding domain of the ETAR. Using COS-7(ETAR) cell, we showed that Ca2+ or Mg2+ was essential for ET-1 binding to the ETAR and that ET-1 treatment induced postreceptor signaling, that is, intracellular accumulation of cyclic AMP (cAMP) and Ca2+ mobilization. The COS-7(ETAR) established in this study will be a useful tool for screening ET-1 antagonists for treating hypertension.  相似文献   

12.
1. We examined time- and cell-type-dependent changes in endothelin (ET)-1-like immunoreactivity, ET receptors binding and nitric oxide (NO) synthase (NOS) activity in CA1 subfields of the hippocampus of stroke-prone spontaneously hypertensive rats subjected to a 10-min bilateral carotid occlusion and reperfusion.2. Microglia aggregated in accord with neuronal death and expressed a high density of ETB receptors and an intense NOS activity in the damaged CA1 pyramidal cell layer, 7 days after the induced transient forebrain ischemia. The increased NOS activity and ETB receptor in microglia disappeared 28 days after this transient ischemia.3. In contrast to microglia, astrocytes presented a moderate level of ET-1-like immunoreactivity, ETB receptors, and NOS activity in all areas of the damaged CA1 subfields, 7 days after the ischemia. These events were further enhanced 28 days after the ischemia.4. In light of these findings, the possibility that the microglial and the astrocytic ETB/NO system largely contributes to development of the neuronal death and to reconstitution of the damaged neuronal tissue, respectively, in the hippocampus subjected to a transient forebrain ischemia would have to be considered.  相似文献   

13.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide that can modulate the behaviour of vascular smooth muscle cells and thus impact on the development of human atherosclerosis. Circulating plasma levels of ET-1 were measured from 82 patients with ischemic cardiomyopathy (ICM) and 42 healthy controls. A significant increase was found in plasma levels of ET-1 in the patients compared to the controls. These circulating levels of ET-1 were greater in patients with diabetes or involvement of several territories. Gene expression of pre-proET-1 and its receptors ETA and ETB was analyzed in the atheromatous plaques from carotid arteries (n = 8) and the internal mammary artery (IMA) (n = 8). Our group observed an increase in pre-proET-1 and ETA in IMA compared with the atheromatous plaques. Immunohistochemical studies in the atherosclerotic plaque showed that the expression of ET-1 was greater in the areas where the macrophages and lipid nucleus were located.Our findings in this group of patients with symptomatic vascular disease suggest that the endothelin system may play an important role in atherothrombosis.  相似文献   

14.
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3−/− and caspase−/− mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM–10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA- and ETB-mediated activation of NLRP3 in mouse CC via Ca2+-dependent ROS generation.  相似文献   

15.
Summary Sub-type selective ligands revealed a differential distribution of endothelin (ET) receptors within human adrenal glands. High densities of ETA receptors were localized, using [125I]-PD151242, to the smooth muscle layer of the arteries, smaller vessels within the capsular plexus and to the secretory cells of zona glomerulosa (K D=139.8±39.7,B max=69.7±9.1 fmol mg−1 protein, mean of 3 individuals±sem). ETB receptors were present in the medulla (K D=145.2±16.4,B max=75.5±12.3), zona glomerulosa (KD=100.6±35.1,B max=63.1±10.0), fasiculata (K D 145.1±162.,B max=67.9±6.9) and reticularis (KD=118.2±18.6,B max=71.9±6.5). ETB receptors were not detected within the smooth muscle of the vasculature. Messenger RNA encoding both sub-types was present in adrenals. ET-like immunoreactivity was localized to the cytoplasm of the endothelial cells from arteries supplying the gland and resistance vessels within the capsular plexus. Staining was also detected in these cells using anti-big ET-1 and less intensely with anti-big ET-2 antisera but not within cells within the cortex or medulla. Big ET-3-like immunoreactivity was localized to secretory cells of the medulla. Staining was not found using antiserum that could detect ET-3, suggesting further processing of big ET-3 may occur within the plasma, and that the cdrenals could be a source of ET-3. The presence of ET-1 was confirmed by high performance liquid chromatography and radioimmunoassay although ET-3 was not detected. The results suggest that ET-1 is the predominant mature isoform, which is localized mainly to adrenal vasculature, particularly the capsular plexus, and may contribute to blood flow regulation in the gland.  相似文献   

16.
Endothelin type A receptor (ETAR) plays an important role in some cardiovascular disorders where ETAR levels are increased. However, regulatory mechanisms for ETAR levels are unknown. Here, we identified Jun activation domain-binding protein 1 (Jab1) as an ETAR-interacting protein by yeast two-hybrid screening of human heart cDNA library using carboxyl terminal tail (C-tail) of ETAR as a bait. The interaction was confirmed by glutathione S-transferase pull-down assay, co-immunoprecipitation in HEK293T cells expressing ETAR-myc and FLAG-Jab1, and confocal microscopy. Jab1 knockdown increased whole cell and cell surface levels of ETAR and ET-1-induced ERK1/2 phosphorylation in HEK293T cells expressing ETAR, whereas Jab1 overexpression decreased them. Jab1 overexpression accelerated disappearance rate of ETAR after protein synthesis inhibition as an index of a degradation rate. ETAR was constitutively ubiquitinated, and the level of ubiquitination was enhanced by Jab1 overexpression. Long-term ET-1 stimulation markedly accelerated the rate of ETAR degradation and increased the amount of Jab1 bound to ETAR with a maximal level of 500% at 3 h. In the absence of ET-1 stimulation, the level of ETBR was lower than that of ETAR and the degradation rate of ETBR was markedly faster than that of ETAR. Notably, the amount of Jab1 bound to ETBR and ubiquitination level of ETBR were markedly higher than those for ETAR. Taken together, these results suggest that the amount of Jab1 bound to ETR regulates the degradation rate of ETAR and ETBR by modulating ubiquitination of these receptors, leading to changes in ETAR and ETBR levels.  相似文献   

17.
1. The aims of the present study were (a) to determine the identity of the G proteins with which the endothelin receptor interacts and whether this interaction is subtype specific and (b) to determine whether agonist exposure can result in specific coupling between the endothelin receptor and G proteins.2. Coupling between endothelin A (ETA) or endothelin B (ETB) receptors and G proteins was assessed in two fibroblast cell lines, each expressing one receptor subtype. Four ligands, ET-1, ET-3, SRTXb, and SRTXc, were used for receptor stimulation. The G protein -subunit coupled to the receptor was identified by immunoprecipitation with an antibody against the endothelin receptor and immunoblotting with specific antibodies against different G protein -subunits.3. Unstimulated ETA and ETB receptors (ETAR and ETBR, respectively) were barely coupled to Go. The unstimulated ETAR coimmunoprecipitated with Gi3, whereas the unstimulated ETBR was much less strongly coupled to Gi3. The coupling of ETBR to Gi1Gi2 -subunits was much stronger than the coupling of ETAR to these -subunits. Stimulation with the different ET agonists also resulted in differential coupling of G proteins to the receptor subtypes. All four ligands caused a strong increase in coupling of the ETBR to Gi3, whereas coupling of the ETAR to this subunit was not affected by ET-1 and was even decreased by SRTXc. On the other hand, all four ligands caused a much greater increase in the coupling of ETAR to Gq/G11 than in the coupling of ETBR to these -subunits. Ligand-induced coupling between the receptors and the Gi1 and Gi2 -subunits is similar for the two receptor subtypes. The same was true for ligand-induced coupling of the receptors to Go, except that ET-3 increased the coupling of this -subunit to ETBR and decreased the coupling to ETAR. Taken together, the results of this study show that coupling between ET receptors and G proteins is ligand and receptor subtype specific.4. It remains to be established whether this diversity of receptor–G protein coupling is of relevance for the various endothelin signaling pathways and/or pathological states.  相似文献   

18.
Three rabbit vessels, the carotid and pulmonary arteries and the jugular vein were investigated to identify vascular monoreceptor systems (either ETA or ETB) to be used in structure-activity studies on endothelins and their antagonists. The RbCA has been found to behave as a monoreceptor ETA preparation, since it shows much greater sensitivity to ET-1 than to ET-3 and is insensitive to IRL 1620. The contractile response of the RbCA to ET-1 is reduced in the presence of BQ-123 but is not influenced by BQ-788. The RbPA behaves as a pure ETB system when stimulated with the ETB selective agonist IRL 1620. The contractile effect of IRL 1620 is reduced in the presence of BQ-788 but is not influenced by BQ-123. The RbJV responds to ETA and to IRL 1620 with contractions that are reduced by both BQ-123 and BQ-788, respectively. The RbJV appears to be a mixed ETA and ETB system in which the two functional sites play an equivalent role in the stimulatory contractile response.Thus, contractile ETA and ETB receptors have been found in arterial and venous vessels of the rabbit and some of these vessels provide sensitive and selective (either ETA or ETB) preparations that appear to be adequate for pharmacological studies on ET receptor agonists or antagonists.  相似文献   

19.
We analyzed the signaling pathways initiated by endothelin receptors ETA and ETB in intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETA and ETB receptors and initiated by Gq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETA receptors via a pathway involving sequential activation of G13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696 and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETB antagonist BQ-788, but not the ETA antagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETB initiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17. endothelin receptor type A; endothelin receptor type B; myosin phosphatase targeting subunit  相似文献   

20.
《Life sciences》1997,61(25):PL397-PL401
The injection of endothelin-1 (ET-1) (2 pmol) into the dorsolateral periaqueductal gray area (PAG) of mice produces antinociceptive effect as underscored by increases in the latency time for the reaction to a hot plate. Pretreatment of the PAG area with bosentan (10 nmol) (a mixed ETA/ETB receptor antagonist), FR 139317 (5 nmol) (ETA receptor selective antagonist) or BQ-788 (5 nmol) (ETB receptor selective antagonist) greatly reduced the antinociceptive effect induced by ET-1. Therefore, ET-1 induces antinociceptive effects via both ETA/ETB receptors. In addition, since ET-antagonists lowered per se the control reaction time of the mice when administered alone to the PAG area, we would suggest that endogenous ET-1 acting within the PAG area contributes to the suppression of pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号