首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using a series of antibody probes as markers of symbiosome development, we have investigated the impaired development of symbiosomes in nodules formed by the plant mutant line Sprint2Fix (sym31). In wild-type pea (Pisum sativum L.) nodules, bacteria differentiate into large pleiomorphic, nitrogen-fixing bacteroids and are singly enclosed within a peribacteroid membrane. In thesym31 mutant, several small undifferentiated bacteroids were often enclosed within one peribacteroid membrane, or were found within a vacuole-like compartment. In wild-type nodules, the monoclonal antibody JIM18, which recognizes a plasmalemma glycolipid antigen, bound to the juvenile peribacteroid membrane, and did not recognize the mature peribacteroid membrane. However, in the mutant, the antibody bound to all peribacteroid membranes within the nodule, suggesting that differentiation of the peribacteroid membrane was arrested. Another antibody, MAC266, recognized plant glycoproteins which normally accumulate in symbiosomes at a late stage of nodule development. Binding of this antibody was much reduced within mutant nodules, labelling only a few mature cells. Similarly, MAC301, which normally recognizes a lipopolysaccharide epitope expressed on differentiated bacteroids prior to the induction of nitrogenase, failed to react with rhizobial cell extracts isolated from nodules of thesym31 mutant. On the basis of these developmental markers, the symbiosomes ofsym31 nodules appeared to be blocked at an early stage of development. The distribution of infection structures was also found to be abnormal in the mutant nodules. Models of symbiosome development are presented and discussed in relation to the morphological and developmental lesions observed in thesym31 mutant.  相似文献   

2.
Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines. Rats were immunised with the peribacteriod material released by mild osmotic shock treatment from membrane-enclosed bacteroids of Rhizobium leguminosarum bv. viceae. In order to diversify the range of McAb specificities, this material was either used as immunogen directly (method 1), or after immunodepletion of a set of glycoprotein and lipopolysaccharide antigens (method 2), or after deglycosylation (method 3). After fusion and screening of cloned hybridoma lines, these three immunisation methods gave respectively 4, 2 and 1 classes of McAb with unique antigen specificities. Ultrastructural immunogold localisation studies showed four different antigens to be present on peribacteriod and plasma membranes (identified by MAC 64, 202, 206 or 209); in addition, a glycoprotein of plant origin but present in the infection-thread matrix was identified by MAC 204. Although none of the epitopes recognised by these McAb was nodule-specific, several were found to be more abundant in extracts of nodule tissue than in uninfected roots (MAC 64, 202, 204, 206). Two McAb reacted with new bacterial antigens: MAC 203 identified a bacterial antigen expressed upon infection but not in free-living cultures of Rhizobium, and MAC 115 identified a bacterial polypeptide (55 kdaltons) that was present in both free-living and bacteroid forms. There were also some McAb of broader specificity that react with antigens present in both plant and bacterial cytoplasms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig inmunoglobulin - kDa kilodalton - LPS lipopolysaccharide - McAb monoclonal antibody - PBM peribacteroid membrane - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis - TFMS trifluoromethane sulfonic acid  相似文献   

3.
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.  相似文献   

4.
Werner  Dietrich  Mörschel  Erhard  Kort  Renate  Mellor  Robert B.  Bassarab  Stephan 《Planta》1984,162(1):8-16
In nodules of Glycine max cv. Mandarin infected with a nod +fix- mutant of Rhizobium japonicum (RH 31-Marburg), lysis of bacteroids was observed 20 d after infection, but occurred in the region around the host cell nucleus, where lytic compartments were formed. Bacteroids, and peribacteroid membranes in other parts of the host cell remained stable until senescence (40d after infection). With two other nod+ fix- mutants of R. japonicum either stable bacteroids and peribacteroid membranes were observed throughout the cell (strain 61-A-165) or a rapid degeneration of bacteroids without an apparent lysis (strain USDA 24) occurred. The size distribution of RH 31-Marburg-infected nodules exhibited only two maxima compared with four in wild-type nodules and nodule leghaemoglobin content was found to be reduced to about one half that of the wild type. The RH 31-Marburg-nodule type is discussed in relation to the stability of the bacteroids and the peribacteroid membrane system in soybean.  相似文献   

5.
Three rat hybridoma lines that produced monoclonal antibodies reacting with the peribacteroid membrane from Pisum sativum were isolated, and these all appeared to recognize the same antigenic structure. Using one of these monoclonal antibodies, AFRC MAC 64, electron microscopy of immunogold-stained thin sections of nodule tissue revealed that the antigen, present in the peribacteroid membrane, was also found in the plant plasma membranes and in the Golgi bodies, but not in the endoplasmic reticulum. When peribacteroid membrane proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electro-blotting, it was found that MAC 64 bound to a series of protease-sensitive bands that migrated in the mol. wt. range 50-85 K. The epitope was sensitive to periodate oxidation and its structure may therefore involve the carbohydrate component of a membrane glycoprotein. We suggest that this structure originates in the Golgi apparatus and is subsequently transferred to the peribacteroid membranes and plasma membranes. The monoclonal antibody also reacted with peribacteroid membranes from nodules of Vicia and lupin, and with plasma membranes and Golgi membranes from uninfected plant cells, including root tip cells from onion (Allium cepa), indicating that the antigen is highly conserved in the plasma membranes of plant cells.  相似文献   

6.
Abundance and distribution of plant cell surface proteins of the hydroxyproline-rich glycoprotein (HRGP) class were studied in the pea- Rhizobium symbiosis using immunoblot analysis. The MAC 265-epitope was especially abundant in pea root nodules containing nitrogen-fixing Rhizobium bacteria. A 180-kDa MAC 265-HRGP dominated in pea shoot plasma membranes, while almost no MAC 265-HRGP was detected in root plasma membranes. We show here that a major difference between the plant-derived peribacteroid membrane of the symbiosomes and the root plasma membrane was the presence of a 100-kDa MAC 265-HRGP in the former. Arabinogalactan proteins (AGPs), as recognized by the monoclonal antibodies MAC 207 and JIM 8, were not detected in the peribacteroid membrane, while two isoforms (100 and 220 kDa) were detected in shoot and root plasma membranes. Specific MAC 265-HRGP isoforms were found in the peribacteroid space fraction of the symbiosomes and thus as soluble proteins in the interface between the symbionts. The abundance of the MAC 265-epitope was much reduced in non-nitrogen-fixing nodules when this phenotype resulted from a dicarboxylate transport mutation in Rhizobium . There was no reduction in the abundance of the MAC 265-epitope in non-fixing phenotypes resulting from a mutation in the plant. The results suggest that bacterial signals related to the bacterial ability to fix nitrogen, might be responsible for the regulation of HRGP expression in root nodules.  相似文献   

7.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

8.
The nitrogenase activity of root nodules from Sesbania cannabina plants treated with Na2S2O4, DTT and trypsin was increased by 108%–114%, 106%–117% and 103%–119%, respectively. EM observation showed that the density of ATP-hydrolase as the marker of lead phosphate particles which were distributed on the peribacteroid membrane was much more significant than that of the control, but the bacteroids in peribacteroid membrane did not have ATP-hydrolase particles present. Dark treatment of the same age plants accelerated the nodule senescence and the ATP-hydrolase particles most densified on the peribacteroid membrane of the nodules, meanwhile, dense ATP-hydrolase particles also appeared in a number of degenerative bacteroids. This again confirms the conformation change of ATP-ase in bacteroids from ATP synthetase to ATP-hydrolase and its relation to nitrogen fixation with the senescence of nodules. The comparison of ATP-hydrolase particle density on the peribacteroid membrane of the nodule cells with different treatmemts are carried out and the role of the ATP-hydrolase on the peribacteroid membrane in substance transportation are discussed.  相似文献   

9.
Summary Nitrogen-fixing peanut root nodules are characterized by their unique structural organization, distinct from other legume nodules. The focus of this study has been in and around the hostsymbiont interface, where the bacterioid and the host cell surface (peribacteroid membrane envelope) interact during symbiosis. The infected nodule cells have revealed the presence of lipid bodies (oleosomes) in intimate association with the peribacteroid membrane, which encloses the large spherical bacteroids with a relatively narrow peribacteroid space. Electron dense structures, referred to as dense bodies have been found attached to the bacteroid outer membranes at the host-symbiont interface. The dense bodies are osmiophilic, amorphous and 3,3-diaminobenzidine positive. The isolated intact bacteroids with dense bodies attached to their cell wall showed significant catalase activity. Many microbodies showing DAB-positive reaction have been found in the host cytoplasm, associated closely with the peribacteroid membrane. These ultrastructural and cytochemical characteristics of peanut root nodules suggest that lipids are utilized during symbiosis and the dense bodies and microbodies may be involved in the catabolic process.Abbreviation DAB 3,3-diaminobenzidine  相似文献   

10.
An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation.  相似文献   

11.
12.
The Rhizobium--legume symbiosis.   总被引:6,自引:0,他引:6  
The rhizobia are soil microorganisms that can interact with leguminous plants to form root nodules within which conditions are favourable for bacterial nitrogen fixation. Legumes allow the development of very large rhizobial populations in the vicinity of their roots. Infections and nodule formation require the specific recognition of host and Rhizobium, probably mediated by plant lectins. Penetration of the host by a compatible Rhizobium species usually provokes host root cell division to form the nodule, and a process of differentiation by both partners then ensues. In most cases the rhizobia alter morphologically to form bacteroids, which are usually larger than the free-living bacteria and have altered cell walls. At all stages during infection, the bacteria are bounded by host cell plasmalemma. The enzyme nitrogenase is synthesized by the bacteria and, if leghaemoglobin is present, nitrogen fixation will occur. Leghaemoglobin is a product of the symbiotic interaction, since the globin is produced by the plant while the haem is synthesized by the bacteria. In the intracellular habitat the bacteria are dependent upon the plant for supplies of energy and the bacteroids, in particular, appear to differentiate so that they are no longer able to utilize the nitrogen that they fix. Regulation of the supply of carbohydrate and the use of the fixed nitrogen thus appear to be largely governed by the host.  相似文献   

13.
There were two forms of rhizobial bacteria present in infected host cells of nodules. One was bacteroids which were enclosed in peribacteroid membrane originated from the infected host cells. The other was rhizobia as vegetative cells. The infected host cells were occupied by most of the bacteroids and a certain number of the vegetative cells respectively. With the nodule senescence, there were two kinds of fate of the bacteria: The bacteroids degenerated togather with the infected host cells at the same time and further disintegrated completely, so it is not possible that the disintegrated bacteroids could be returned into soil to revive: the vegetative cells did not disintegrate and die when the infected host cells senesced, eventually could be turned back into soil. The vegetative cells may play an important role, on the one hand, in cycle between legume and soil, on the other hand, maintain rhizobia in natural balance of population ecosystem.  相似文献   

14.
Mutagenesis provoked by exposure to increased concentration of antibiotics of five indigenous Rhizobium galegae strains resulted in the generation of several antibiotic-resistant mutants. The mutants differed from the wild type and one from another in respect to the nodulation capacity, the nitrogenase activity, the nodule ultrastructure, and the plant growth response. Galega plants inoculated with mutants resistant to streptomycin and rifampicin formed nodules with higher nitrogenase activity and accumulated more shoot dry biomass than plants inoculated with the parent strains. Resistance to kanamycin and nalidixic acid was associated with significant decrease of nitrogenase activity. A correlation between nitrogen-fixing efficiency and nodule infected cell ultrastructure was found. When the bacteroids occupied about 10 times higher area in infected cells of nodule than peribacteroid spaces and host cytosol had electron dense and homogenous structure, the nitrogenase activity was the highest. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
根瘤菌在根瘤宿主细胞内有两种形式:一种为拟菌体、被宿主细胞来源的财膜包裹;另一种为自由生活的营养细胞。前者色大多数,后者只有少数。随着根瘤的衰老,其命运是:拟菌体及其宿主细胞同时衰老以致最终解体,拟菌体不能再入土壤复生;以自由生活的营养细胞形式存在的细菌,不随其宿主细胞的解体而亡,可回复到土壤,一方面在豆科植物和土壤之间循环,一方面维持根瘤菌在土壤中天然的群体生态平衡。  相似文献   

16.
Iron Uptake by Symbiosomes from Soybean Root Nodules   总被引:26,自引:2,他引:24       下载免费PDF全文
To identify possible iron sources for bacteroids in planta, soybean (Glycine max L. Merr.) symbiosomes (consisting of the bacteroid-containing peribacteroid space enclosed by the peribacteroid membrane [PBM]) and bacteroids were assayed for the ability to transport iron supplied as various ferric [Fe(III)]-chelates. Iron presented as a number of Fe(III)-chelates was transported at much higher rates across the PBM than across the bacteroid membranes, suggesting the presence of an iron storage pool in the peribacteroid space. Pulse-chase experiments confirmed the presence of such an iron storage pool. Because the PBM is derived from the plant plasma membrane, we reasoned that it may possess a ferric-chelate reductase activity similar to that present in plant plasma membrane. We detected ferric-chelate reductase activity associated with the PBM and suggest that reduction of Fe(III) to ferrous [Fe(II)] plays a role in the movement of iron into soybean symbiosomes.  相似文献   

17.
The membrane lipids of free living and bacteroid forms of Bradyrhizobiumjaponicum, obtained from nodules occupied by both typed anduntyped bacteria, were isolated and characterized by a combinationof NMR spectroscopy, mass spectrometry, and other chemical andphysical methods. These studies indicated that both the freeliving and bacteroid forms of this organism contain glycolipidsalmost exclusively of the type found in plant cells. In thebacteroid forms, there was a dramatic shift towards the synthesisof digalactosyl diacylglycerol as the major lipid. This glycolipidhas rarely been found outside of the plant kingdom and photosyntheticbacteria, and its occurrence in the bacteroid form of a plantsymbiont is therefore remarkable. The presence of plant celland organelle contaminants in the bacteroid preparations wasruled out by scanning electron microscopy, Southern blot analysesfor plant DNA using specific gene probes, and chemical analysesfor plant marker steroids, steroid glycosides, and cerebrosides.Digalactosyl diacylglycerol is not found in the plasma membraneof plant cells (of which the peribacteroid membrane is an extension)but is thought to be restricted to plastids. This result followsour earlier finding that the other predominant plant glycolipid,sulfoquinivosyl diacylglycerol, is a membrane component of fastgrowing Rhizobia and is found even when cells are cultivatedin free culture where there is no question of plant contamination.The near absence of these lipids in the membranes of bacteriaoutside of this special group of organisms and photosyntheticbacteria suggests that the trait could have been passed on throughgene transfer from plants to the bacteria at some point duringthe development of their symbiotic relationship. In the caseof digalactosyl diacylglycerol, there is also the possibilitythat some common biosynthetic intermediates are used by boththe plant and the bacteria. This is a striking parallel withsome host-pathogen interactions. bacteroids Bradyrhizobium digalactosyl diacylglycerol glycolipids lipids membrane nitrogen fixation Rhizobium symbiosis  相似文献   

18.
箭舌豌豆根瘤液泡中细菌周膜来源的研究   总被引:3,自引:0,他引:3  
韩善华 《微生物学报》1995,35(5):381-385
电镜观察结果表明,幼龄箭舌豌豆根瘤侵染细胞的细胞质较少,中央是一些体积较大的液泡。细胞质中侵入线经常可见,由侵入线释放出来的细菌均有细菌周膜。这些细菌只位于细胞质中,不出现在液泡里面。成熟根瘤中的侵染细胞与此不同,它们中有大量的成熟侵染细胞,细胞质丰富,里面充满大量细菌,中央常有一个大液泡。当中央液泡发育到一定程度时,位于其附近的细菌可通过液泡膜内吞、液泡膜与细菌周膜融合及液泡膜破裂3种途径进入液泡,后一种途径常伴有寄主细胞质。液泡中的细菌绝大部分裸露在外,只有个别细菌具有细菌周膜且多位于液泡膜的破损处附近,因此细菌周膜可能是原来就有的。  相似文献   

19.
In the rhizosphere and their interaction with plants rhizobia encounter many different plant compounds, including phytohormones like auxins. Moreover, some rhizobial strains are capable of producing the auxin, indole-3-acetic acid (IAA). However, the role of IAA for the bacterial partner in the legume– Rhizobium symbiosis is not known. To identify the effect of IAA on rhizobial gene expression, a transposon (mTn 5gusA - oriV ) mutant library of Rhizobium etli , enriched for mutants that show differential gene expression under microaerobiosis and/or addition of nodule extracts as compared with control conditions, was screened for altered gene expression upon IAA addition. Four genes were found to be regulated by IAA. These genes appear to be involved in plant signal processing, motility or attachment to plant roots, clearly demonstrating a distinct role for IAA in legume– Rhizobium interactions.  相似文献   

20.
Nodule senescence is one aspect of nitrogen fixation that is important to study from the perspective of improving the host-bacteroid interaction. In winged bean nodules, a 21-kilodalton protein is specifically expressed when senescence begins. Using subcellular fractionation, we observed that this plant protein interacts with the bacteroids. Microsequencing of the protein allowed us to obtain a specific oligonucleotide that was used to isolate the corresponding nodule cDNA. Sequence analysis of this cDNA revealed that the 21-kilodalton protein has all of the features of a legume Kunitz protease inhibitor. Subsequent analysis confirmed that this nodulin is indeed a protease inhibitor. Immunocytochemical study showed that the protease inhibitor is exclusively localized in infected senescent cells of the nodule, particularly in disorganized bacteroids, the peribacteroid membrane, vacuole membranes, and in the vacuole fluid. The specific expression of a protease inhibitor at senescence may be of particular interest if the targeted proteolytic activity is important for the symbiotic relationship. This point is discussed in relation to the known nodule proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号