首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported a truncated polyphemusin peptide analogue, T140, which efficiently inhibits infection of target cells by T-cell line-tropic strains of HIV-1 (X4-HIV-1) through its specific binding to a chemokine receptor, CXCR4. We have found that T140 is not stable in feline serum due to the cleavage of the C-terminal Arg,(14) indispensable for anti-HIV activity. On the other hand, a C-terminally amidated analogue of T140, TZ14004, has been found to be completely stable in incubation in the serum for 2 days. The C-terminal amide is thought to be needed for stability in serum. However, TZ14004 does not have fairly strong anti-HIV activity, but has relatively strong cytotoxicity, probably due to an increase by +1 charge from total +7 charges of T140. In our previous study, the number of total +6 charges seemed to be a suitable balance between activity and cytotoxicity. In this study, we have conducted a double-L-citrulline (Cit)-scanning study on TZ14004 based on the C-terminally amidated form in due consideration of the total net charges in the whole molecule to find novel effective CXCR4 inhibitors, TN14003 ([Cit(6)]-T140 with the C-terminal amide) and TC14012 ([Cit(6), D-Cit(8)]-T140 with the C-terminal amide), which possess high selectivity indexes (SIs) and complete stability in feline serum.  相似文献   

2.
We have previously found that a 14-amino acid residue-peptide, T140, inhibits infection of target cells by T cell line-tropic HIV-1 (X4-HIV-1) through its specific binding to a chemokine receptor, CXCR4. Here, the importance of an L-3-(2-naphthyl)alanine (Nal) residue at position 3 in T140 for high anti-HIV activity and inhibitory activity against Ca(2+) mobilization induced by stromal cell-derived factor (SDF)-1alpha-stimulation through CXCR4 has initially been shown by the synthesis and biological evaluation of several analogues, where Nal(3) is substituted by diverse aromatic amino acids. Next, the order of the N-terminal 3 residues (Arg(1)-Arg(2)-Nal(3)) has been proved to be important from the structure--activity relationship (SAR) study shuffling these residues. Based on these results, we have found 10-residue peptides possessing modest anti-HIV activity by systematic antiviral evaluation of a series of synthetic, shortened analogues of T140.  相似文献   

3.
We report the solution structure of T140, a truncated polyphemusin peptide analogue that efficiently inhibits infection of target cells by T-cell line-tropic strains of HIV-1 through its specific binding to a chemokine receptor, CXCR4. Nuclear magnetic resonance analysis and molecular dynamic calculations revealed that T140 has a rigidly structured conformation constituted by an antiparallel beta-sheet and a type II' beta-turn. A protuberance is formed on one side of the beta-sheet by the side-chain functional groups of the three amino acid residues (L-3-(2-naphthyl)alanine, Tyr5 and Arg14), each of which is indispensable for strong anti-HIV activity. These findings provide a rationale to dissect the structural basis for the ability of this compound to block the interaction between CXCR4 and envelope glycoproteins from T-tropic strains of HIV-1.  相似文献   

4.
The polyphemusins present in the hemocytes of the horsechoe crab and their structurally modified analogs have been shown to exhibit activity against HIV-1. Among the many variants, T22 ([Tyr(5,12), Lys(7)]-polyphemusin II), and its shorter and more potent analog, T140 [Arg(1)-Arg-2-Nal-Cys-Tyr(5)-Arg-Lys-D-Lys-Pro-Tyr(10)-Arg-Cit-Cys-Arg(14)] (Polyphemusin II-derived peptide), affect the HIV-cell fusion process and inhibit the T-cell line-tropic (T-tropic) HIV-1 infection. Conformational studies of polyphemusin II derived peptide have been carried out by (1)H and (13)C 2D-NMR and MD simulations in water and HFA (40%). The NMR parameters of chemical shift, temperature coefficients of the NH chemical shifts, (3)JNHalpha coupling constants and the pattern of nOe's were used to deduce the structural characteristics. Solution structures were generated using dihedral and distance restraints by MD simulations. The structures are characterized by a dominant family possessing an anti-parallel beta-pleated sheet that is constrained by the disulphide bridge between Cys4 and Cys13. The two strands of the beta-sheet are joined by a Type II' beta-turn spanning the residues Lys(7)-D-Lys(8)-Pro(9)-Tyr(10). This conformation is present in both water and HFA. The only difference in the two structures is that the beta-strands are more cohesive in HFA being firmly held by H-bonds. The solution structures generated from MD simulations were refined by MARDIGRAS to R-factors of 0.44 and 0.57 in water and HFA respectively. The conformation deduced for T140 is very similar to that reported for T22 and is thought to be associated with their anti HIV activity.  相似文献   

5.
ShK toxin, a potassium channel blocker from the sea anemone Stichodactyla helianthus, is a 35-residue polypeptide cross-linked by 3 disulfide bridges. In an effort to generate truncated peptidic analogues of this potent channel blocker, we have evaluated three analogues, one in which the native sequence was truncated and then stabilized by the introduction of additional covalent links (a non-native disulfide and two lactam bridges), and two in which non-native structural scaffolds stabilized by disulfide and/or lactam bridges were modified to include key amino acid residues from the native toxin. The effect of introducing a lactam bridge in the first helix of ShK toxin (to create cyclo14/18[Lys14,Asp18]ShK) was also examined to confirm that this modification was compatible with activity. All four analogues were tested in vitro for their ability to block Kv1.3 potassium channels in Xenopus oocytes, and their solution structures were determined using 1H NMR spectroscopy. The lactam bridge in full-length ShK is well tolerated, with only a 5-fold reduction in binding to Kv1.3. The truncated and stabilized analogue was inactive, apparently due to a combination of slight deviations from the native structure and alterations to side chains required for binding. One of the peptide scaffolds was also inactive because it failed to adopt the required structure, but the other had a K(d) of 92 microM. This active peptide incorporated mimics of Lys22 and Tyr23, which are essential for activity in ShK, and an Arg residue that could mimic Arg11 or Arg24 in the native toxin. Modification of this peptide should produce a more potent, low molecular weight peptidic analogue which will be useful not only for further in vitro and in vivo studies of the effect of blocking Kv1.3, but also for mapping the interactions with the pore and vestibule of this K(+) channel that are required for potent blockade.  相似文献   

6.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory and demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). In the present report, a linear analogue and a series of cyclic semi-mimetic peptides were designed and synthesized based on the human myelin basic protein (MBP(87-99)) epitope (Val87-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro-Arg-Thr-Pro90) and on Copolymer I (a mixture of random polymers of Ala, Gln, Lys and Tyr used to treat MS). These analogues were designed looking for suppressors of EAE induced by guinea pig MBP(72-85) epitope (Gln-Lys-Ser-Gln-Arg-Ser-Gln-Asp-Glu-Asn-Pro-Val) in Lewis rats. The linear analogue [Arg91,Ala96]MBP(87-99), in which Arg substitutes Lys91 and Ala substitutes Pro96, was found to be a strong inhibitor which when administered to Lewis rats together with the encephalitogenic agonist MBP(72-85) completely prevented the induction of EAE. In contrast, three N- and C-termini amide-linked cyclic semi-mimetic peptides, [cyclo-Phe-Arg-Asn-Ile-Val-Thr-Ala-Acp (1), cyclo-Phe-Ala-Arg-Gln-Acp (2), cyclo-Tyr-Ala-Lys-Gln-Acp (3)] as well as a Lys side chain and C-terminous cyclic semi mimetic peptide cyclo(Lys, Acp)-Phe-Lys-Asn-Ile-Val-Thr-Ala-Acp (4) which contain segments of MBP(87-99) or are constituted from immunophoric residues of copolymer 1, were ineffective in inducing or inhibiting EAE in Lewis rats. However co-injection of cyclic analogues with MBP(72-85) delayed the onset of EAE indicating a modulatory effect on the EAE activity of MBP(72-85). These findings suggest that molecule length, size of cyclic moiety and backbone conformation are important elements for immunogenic activity. Moreover blockade of MBP(72-85) induced EAE by the unrelated peptide [Arg91,Ala56]MBP(87-99) could indicate that the mechanism of inhibition is not due to binding competition but rather due to the delivery of a negative signal by the antagonist which overcomes the agonist response possibly through the activation of antigen specific regulatory T cells.  相似文献   

7.
8.
Fluorimetric titrations of mammalian [Arg8] LH-RH, chicken [Gln8] LH-RH and an analogue [Lys8] LH-RH revealed pK values of 5.80, 6.22 and 6.01 for His2, and 9.65, 9.88 and 9.88 for Tyr5. The titration ranges for His2 were 1.72, 2.03 and 1.71 while the range for Tyr5 was rather similar (approximately 1.7) for all three peptides. Biological activity and receptor binding in the mammalian system for chicken LH-RH was 1% relative to mammalian LH-RH while [Lys8] LH-RH had a relative activity of approximately 10%. In contrast, mammalian and chicken LH-RH were equipotent in stimulating LH release from chicken pituitary cells. The results indicate differences in the receptors related to the conformations of LH-RH and position 8-substituted analogues.  相似文献   

9.
Two analogues of the 29 amino acid sequence of human growth hormone-releasing hormone, namely [Nle27]hGH-RH(1-29)-NH2 and [Orn(12,21),Nle27]hGH-RH(1-29)-NH2, have been synthesized and subjected to digestion by trypsin. The course of degradation was followed using RP-HPLC and ESI-MS. Several intermediates and final products of degradation were identified and conclusions regarding the rate of cleavages at different positions occupied by Lys and Arg residues were drawn. The analogue containing ornithine was found to be less susceptible to hydrolysis by trypsin: the 12-13 and 21-22 peptide bonds were completely resistant to the cleavage. The results show that by replacing Lys with Orn, a possibility exists to design new peptides, which could be more stable in biological fluids.  相似文献   

10.
Gerratana B  Cleland WW  Frey PA 《Biochemistry》2001,40(31):9187-9195
Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.  相似文献   

11.
L A Dick  G Heibel  E G Moore  T G Spiro 《Biochemistry》1999,38(20):6406-6410
UV resonance Raman difference spectra between ligated and deoxyhemoglobin contain tryptophan and tyrosine signals which arise from quaternary H-bonds in the T state, which are broken in the R state. These H-bonds are unaffected by bis(3,5-dibromosalicyl) fumarate cross-linking at the Lys alpha 99 residues, which prevents dissociation of Hb tetramers to dimers. However, when the pH is lowered from 9.0, or when NaCl is added, intensity is diminished for the tyrosine Y8 and tryptophan W3 bands of cross-linked deoxyHb, but not of native deoxyHb. This effect is attributed to weakening of tertiary H-bonds involving Tyr alpha 140 and Trp alpha 14, when the T state salt bridge between Val alpha 1 and Arg alpha 141 is formed via protonation of the terminal amino group and anion binding. The Tyr alpha 140-Val alpha 93 H-bond connects the Arg alpha 141-bearing H helix with the Lys alpha 99-bearing G helix. Weakening of the H-bond reflects a tension between the fumarate linker and the salt-bridge. This tension inhibits protonation of the Val alpha 1 amino terminus, thus accounting for the diminution of both proton [Bohr effect] and CO2 binding in the T state as a result of cross-linking.  相似文献   

12.
Variant forms of mammalian gonadotropin-releasing hormone (GnRH) (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly.NH2) are present in chicken ([Gln8] GnRH and [His5, Trp7, Tyr8]GnRH), salmon ([Trp7, Leu8]GnRH), and lamprey ([Tyr3, Leu5, Glu6, Trp7, Lys8] GnRH). To delineate the functional importance of the variant amino acids in positions 5, 7, and 8, the natural peptides and chimeric analogues were tested for gonadotropin-releasing activity and receptor-binding activity in rat, sheep, and chicken pituitaries. The results demonstrate that (i) the mammalian receptor has a high fidelity for Arg8 while the chicken receptor is less discriminatory and accepts basic or neutral amino acids in this position. Arg8 may contribute to conformational stabilization, and conformational constraint with D-Trp6 restored activity to analogues lacking Arg8 in the mammalian systems. D-Trp6 incorporation did not generally enhance activity in the chicken pituitary. (ii) His5 accompanying Arg8 in analogues markedly diminished activity in the chicken while gonadotropin-releasing activity was retained in the sheep pituitary. Receptor-binding activity was increased in the sheep indicating an uncoupling of receptor occupancy and activation. (iii) Substitution in position 7 is tolerated by the mammalian and chicken receptor. With Trp7-substituted analogues receptor-binding activity was relatively lower than gonadotropin-releasing activity in the sheep pituitary, suggesting an enhanced receptor activation by these analogues or the existence of different GnRH receptors.  相似文献   

13.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell‐permeant peptide Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys (PIK, P eptide I nhibitor of K inase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L ‐PIK in a biological milieu prompts for development of more stable L ‐PIK analogues for use as experimental tools in basic and drug‐oriented biomedical research. Previously, we designed PIK1, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys‐NH2, that was 2.5‐fold more resistant to peptidases in human plasma in vitro than L ‐PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site‐protected peptides based on L ‐PIK and PIK1 degradation patterns in human plasma as revealed by 1H‐NMR analysis. Implemented modifications increased half‐live of the PIK‐related peptides in plasma about 10‐fold, and these compounds retained 25–100% of L ‐PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐D ‐Arg‐Lys‐NH2, was identified as the most stable and effective L ‐PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin‐induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell‐permeant inhibitors of MLCK in cell culture‐based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Jones S  Howl J 《Regulatory peptides》2004,121(1-3):121-128
The formation of an amphipathic helix is a major determinant of the biological activity of the tetradecapeptide mastoparan (MP). To address the functional significance of lysyl residues at positions 4, 11 and 12 of MP, we synthesised five novel analogues using sequence permutation and arginine-substitution to delocalise cationic charge. Comparative bioassays determined cytotoxicity, beta-hexoseaminidase secretory efficacy and peptide-activated extracellular receptor-stimulated kinase (ERK)1/2 phosphorylation. The monosubstitution of individual lysine residues with arginine produced differential changes to the indices of cytotoxicity and secretion indicating that these conservative substitutions are compatible with membrane translocation and the selective binding and activation of intracellular proteins. More profound changes to the predicted hydrophilic face of MP, resulting from the relocation or substitution of additional lysyl residues, enhanced both the cytotoxicity and secretory efficacy of novel peptides. Significantly, the more amphipathic peptide [Lys5, Lys8, Aib10]MP was identified to be both the most cytotoxic and the most potent secretagogue of all the peptides compared here. Charge delocalisation within the hydrophilic face of MP analogues was also compatible with peptide-induced activation of ERK1/2 phosphorylation. Our data indicate that charge delocalisation is a suitable strategy to engineer more potent analogues of MP that differentially target intracellular proteins.  相似文献   

15.
A photoaffinity substrate analogue, 8-azido-ADP-[14C]glucose, reacts specifically and covalently with Escherichia coli ADP-glucose synthetase. The site(s) of reaction of 8-azido-ADP-[14C]glucose with the enzyme was identified by isolation of tryptic peptides containing the labeled analogue by use of high performance liquid chromatography technique and subsequent NH2-terminal sequence analysis of the purified radioactive peptides. One major binding region of the azido analogue is a peptide segment composed of residues 107-114 of the enzyme's polypeptide chain. Lys 108 and Arg 114 become trypsin-resistant sites when the enzyme is photoinactivated by 8-azido-ADP-[14C] glucose, suggesting that the analogue binds at or near the vicinity of these 2 basic amino acid residues. Conformational analysis of this peptide segment (residues 107-114) shows a strong probability of a reverse beta-turn secondary structure, suggesting that this peptide segment is on the enzyme surface. Two minor reaction regions of the enzyme with the analogue were also identified by chemical characterization. One region was composed of residues 162-207. Lys 194 was previously suggested as the activator-binding site by chemical modification studies with pyridoxal phosphate (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). Another minor region where the analogue binds the tryptic peptide composed of residues 380-385 is near the COOH-terminal side of the enzyme. It is postulated that all these peptide segments are juxtaposed in tertiary structure.  相似文献   

16.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

17.
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The reaction of holo-(D-glyceraldehyde 3-phosphate dehydrogenase) (EC 1.2.1.12) from rat skeletal muscle with [14C]butanedione in 0.05 M-NH4HCO3, pH 8.0, resulted in modification (*) of two arginine residues per subunit with a concomitant loss of catalytic activity. From a tryptic digest of the modified protein two radiolabelled peptides were isolated, with the following sequences: (1)Val-Ile-Ile-Asn-Ala-Pro-Thr-Ala-Asp-Ala(Glx,Met,Leu,Phe,Met)Gly-Val-Asx-Arg- Glx(His,Tyr)Ser-Lys and (2) Asp-Ala-Gly-Ala-Thr-Ile-Ala-Leu(Asx,Glx,Arg,Phe,Val)Lys. By comparison of the data with the known sequences of homologous enzymes, the localization of the modified residues was established. The first peptide was identified as corresponding to residues 116--139, the second to residues 293--306. Experimental evidence from this and previous studies suggests that arginine-134 is important for the catalytic activity of the rat muscle enzyme, being involved in structural rearrangements accompanying the organization of the active centre on the binding of coenzyme and substrate.  相似文献   

19.
Abstract Pseudin-2 is a cationic alpha-helical peptide that was first isolated from the skin of the paradoxical frog Pseudis paradoxa on the basis of its antimicrobial activity. We have investigated the insulin-releasing properties and cytotoxicity of the peptide, together with selected analogues with increased cationicity and hydrophobicity. At concentrations in the range 10(-9)-10(-6) m, pseudin-2, and its [Lys18], [Phe8], and [d-Lys3,d-Lys10,d-Lys14] derivatives, stimulated insulin release from the BRIN-BD11 clonal beta-cell line without increasing release of lactate dehydrogenase. The [Lys18] analogue was the most potent (46% increase in insulin release at 10(-9) m) and the most effective (215% increase in insulin release at 10(-6) m). The more cationic [Lys3,Lys10,Lys14] and [Lys3,Lys10,Lys14,Lys21] analogues lacked insulinotropic action and the more hydrophobic [Phe16] analogue was cytotoxic at concentrations > or =10(-7) m. Pseudin-2 and [Lys18]-pseudin-2 had no effect on intracellular calcium concentrations and stimulated insulin release in the absence of external calcium. [Lys18]-pseudin-2 (10(-8) m) stimulated insulin release in the presence of diazoxide and verapamil. Our results demonstrate that pseudin-2 stimulates insulin secretion from BRIN-BD11 cells by a mechanism involving Ca2+-independent pathways and identify [Lys18]-pseudin-2 as a peptide that may have potential for development as a therapeutically valuable insulinotropic agent for the treatment of type 2 diabetes.  相似文献   

20.
B Gysin  D Trivedi  D G Johnson  V J Hruby 《Biochemistry》1986,25(25):8278-8284
The hyperglycemia and ketosis of diabetes mellitus are generally associated with elevated levels of glucagon in the blood. This suggests that glucagon is a contributing factor in the metabolic abnormalities of diabetes mellitus. A glucagon-receptor antagonist might provide important evidence for glucagons's role in this disease. In this work we describe how we combined structural modifications that led to glucagon analogues with partial agonist activity to give glucagon analogues that can act as competitive antagonists of glucagon-stimulated adenylate cyclase activity. Using solid-phase synthesis methodology and preparative reverse-phase high-performance liquid chromatography, we synthesized the following seven glucagon analogues and obtained them in high purity: [D-Phe4,Tyr5,Arg12]glucagon (2); [D-Phe4,Tyr5,Lys17,18]glucagon (3); [Phe1,Glu3,Lys17,18]glucagon (4); [Glu3,Val5,Lys17,18]glucagon (5); [Asp3,D-Phe4,Ser5,Lys17,18]glucagon (6); I4-[Asp3,D-Phe4,Ser5,Lys17,18]glucagon (7); [Pro3]glucagon (8). Purity was assessed by enzymatic total hydrolysis, by chymotryptic peptide mapping, and by reverse-phase high-performance liquid chromatography. The new analogues were tested for specific binding, for their effect on the adenylate cyclase activity in rat liver membranes, and for their effect on the blood glucose levels in normal rats relative to glucagon. Analogues showing no adenylate cyclase activity were examined for their ability to act as antagonists by displacing glucagon-stimulated adenylate cyclase dose-response curves to the right (higher concentrations). The binding potencies of the new analogues relative to glucagon (= 100) were respectively 1.0 (2), 1.3 (3), 3.8 (4), 0.4 (5), 1.3 (6), 5.3 (7), and 3 (8). Glucagon analogues 3-5 and 8 were all weak partial agonists with EC50 values of 500 (3), 250 (4), 1600 (5), and 395 nM (8), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号