首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RFC, and Escherichia coli single strand DNA-binding protein (SSB) and required the presence of ATP. "Passive" self-loading of PCNA onto DNA takes place in the absence of RFC, in an ATP-independent reaction, which was strongly inhibited by SSB. The nucleotide substitution error rate for pol delta holoenzyme (HE) (pol delta + PCNA + RFC) was 4.6 x 10(-4) for T.G mispairs, 5.3 x 10(-5) for G.G mispairs, and 4.5 x 10(-6) for A.G mispairs. The T.G misincorporation frequency for pol delta without the accessory proteins was unchanged. The fidelity of pol delta HE was between 1 and 2 orders of magnitude lower than that measured for the E. coli pol III HE at the same template position. This relatively low fidelity was caused by inefficient proofreading by the S. pombe polymerase-associated proofreading exonuclease. The S. pombe 3'-exonuclease activity was also extremely inefficient in excising primer-3'-terminal mismatches in the absence of dNTP substrates and in hydrolyzing single-stranded DNA. A comparison of pol delta HE with E. coli pol IIIalpha HE (lacking the proofreading exonuclease subunit) showed that both holoenzymes exhibit similar error rates for each mispair.  相似文献   

2.
Replication factor C (RFC) loads the clamp protein PCNA onto DNA structures. Ctf18-RFC, which consists of the chromosome cohesion factors Ctf18, Dcc1, and Ctf8 and four small RFC subunits, functions as a second proliferating cell nuclear antigen (PCNA) loader. To identify potential targets of Ctf18-RFC, human cell extracts were assayed for DNA polymerase activity specifically stimulated by Ctf18-RFC in conjunction with PCNA. After several chromatography steps, an activity stimulated by Ctf18-RFC but not by RFC was identified. Liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis revealed the presence of two DNA polymerases, eta and lambda, in the most purified fraction, but experiments with purified recombinant proteins demonstrated that only polymerase (pol) eta was responsible for activity. Ctf18-RFC alone stimulated pol eta, and the addition of PCNA cooperatively increased stimulation. Furthermore, Ctf18-RFC interacted physically with pol eta, as indicated by co-precipitation in human cells. We propose that this novel loader-DNA polymerase interaction allows DNA replication forks to overcome interference by various template structures, including damaged DNA and DNA-protein complexes that maintain chromosome cohesion.  相似文献   

3.
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex.  相似文献   

4.
Amin NS  Tuffo KM  Holm C 《Genetics》1999,153(4):1617-1628
To identify proteins that interact with the yeast proliferating cell nuclear antigen (PCNA), we used a genetic approach to isolate mutations that compensate for the defects in cold-sensitive (Cs(-)) mutants of yeast PCNA (POL30). Because the cocrystal structure of human PCNA and a p21(WAF1/CIP1) peptide shows that the interdomain region of PCNA is a site of p21 interaction, we specifically looked for new mutations that suppress mutations in the equivalent region of yeast PCNA. In independent screens using three different Cs(-) mutants, we identified spontaneously arising dominant suppressor mutations in the RFC3 gene. In addition, dominant suppressor mutations were identified in the RFC1 and RFC2 genes using a single pol30 mutant. An intimate association between PCNA and RFC1p, RFC2p, and RFC3p is suggested by the allele-restricted suppression of 10 different pol30 alleles by the RFC suppressors. RFC1, RFC2, and RFC3 encode three of the five subunits of the replication factor C complex, which is required to load PCNA onto DNA in reconstituted DNA replication reactions. Genomic sequencing reveals a common region in RFC1p, RFC2p, and RFC3p that is important for the functional interaction with PCNA. Biochemical analysis of the wild type and mutant PCNA and RFC3 proteins shows that mutant RFC3p enhances the production of long DNA products in pol delta-dependent DNA synthesis, which is consistent with an increase in processivity.  相似文献   

5.
Escherichia coli DNA polymerase IV (pol IV), a member of the error-prone Y family, predominantly generates -1 frameshifts when copying DNA in vitro. T-->G transversions and T-->C transitions are the most frequent base substitutions observed. The in vitro data agree with mutational spectra obtained when pol IV is overexpressed in vivo. Single base deletion and base substitution rates measured in the lacZalpha gene in vitro are, on average, 2 x 10(-4) and 5 x 10(-5), respectively. The range of misincorporation and mismatch extension efficiencies determined kinetically are 10(-3) to 10(-5). The presence of beta sliding clamp and gamma-complex clamp loading proteins strongly enhance pol IV processivity but have no discernible influence on fidelity. By analyzing changes in fluorescence of a 2-aminopurine template base undergoing replication in real time, we show that a "dNTP-stabilized" misalignment mechanism is responsible for making -1 frameshift mutations on undamaged DNA. In this mechanism, a dNTP substrate is paired "correctly" opposite a downstream template base, on a "looped out" template strand instead of mispairing opposite a next available template base. By using the same mechanism, pol IV "skips" past an abasic template lesion to generate a -1 frameshift. A crystal structure depicting dNTP-stabilized misalignment was reported recently for Sulfolubus solfataricus Dpo4, a Y family homolog of Escherichia coli pol IV.  相似文献   

6.
The Saccharomyces cerevisiae gene WHIP/ MGS1 encodes a protein related to the subunits of Replication Factor C (RFC). We found that the RFC-like motifs in Whip/Mgs1 are essential for its function. Furthermore, by screening for synthetic dosage lethality, we have shown that overexpression of MGS1 causes lethality in combination with mutations in genes that encode replication proteins such as DNA polymerase delta, RFC, PCNA and RPA. Moreover, loss of MGS1 function interferes with the ability of multicopy PCNA to suppress the replication defect of the rfc5-1 mutant. At permissive temperatures, deletion of MGS1 suppresses the hydroxyurea (HU) sensitivity of pol31 and pol32 mutants, which bear mutations in the smaller subunits of DNA polymerase delta, and at semipermissive and non-permissive temperatures mgs1delta partially alleviates the growth defects of the pol31 mutant. We also report that the growth defect and HU sensitivity of the pol31 mutant are suppressed by mms2delta and rad18delta mutations. We suggest that Mgs1 interacts with the DNA replication machinery to modulate the function of DNA polymerase delta during replication or replication-associated repair, and influences the choice of the pathway employed for replication fork reactivation. Possible roles of Mgs1, DNA polymerase delta, Rad18 and Mms2 in replication and replication fork restart are discussed.  相似文献   

7.
In Escherichia coli, the dinB gene is required for the SOS-induced lambda untargeted mutagenesis pathway and confers a mutator phenotype to the cell when the gene product is overexpressed. Here, we report that the purified DinB protein is a DNA polymerase. This novel E. coli DNA polymerase (pol IV) is shown to be strictly distributive, devoid of proofreading activity, and prone to elongate bulged (misaligned) primer/template structures. Site-directed mutagenesis experiments of dinB also demonstrate that the polymerase activity of DinB is required for its in vivo mutagenicity. Along with the sequence homologies previously found within the UmuC-like protein family, these results indicate that the uncovered DNA polymerase activity may be a common feature of all these homologous proteins.  相似文献   

8.
Wang Y  Zhang Q  Chen H  Li X  Mai W  Chen K  Zhang S  Lee EY  Lee MY  Zhou Y 《PloS one》2011,6(11):e27092
Mammalian DNA polymerase δ (pol δ), a four-subunit enzyme, plays a crucial and versatile role in DNA replication and various DNA repair processes. Its function as a chromosomal DNA polymerase is dependent on the association with proliferating cell nuclear antigen (PCNA) which functions as a molecular sliding clamp. All four of the pol δ subunits (p125, p50, p68, and p12) have been reported to bind to PCNA. However, the identity of the subunit of pol δ that directly interacts with PCNA and is therefore primarily responsible for the processivity of the enzyme still remains controversial. Previous model for the network of protein-protein interactions of the pol δ-PCNA complex showed that pol δ might be able to interact with a single molecule of PCNA homotrimer through its three subunits, p125, p68, and p12 in which the p50 was not included in. Here, we have confirmed that the small subunit p50 of human pol δ truthfully interacts with PCNA by the use of far-Western analysis, quantitative ELISA assay, and subcellular co-localization. P50 is required for mediation of the interaction between pol δ subassemblies and PCNA homotrimer. Thus, pol δ interacts with PCNA via its four subunits.  相似文献   

9.
This study investigated the requirement for ubiquitylation of PCNA at lysine 164 during polymerase eta-dependent translesion synthesis (TLS) of site-specific cis-syn cyclobutane thymine dimers (T (wedge)T). The in vitro assay recapitulated origin-dependent initiation, fork assembly, and semiconservative, bidirectional replication of double-stranded circular DNA substrates. A phosphocellulose column was used to fractionate HeLa cell extracts into two fractions; flow-through column fraction I (CFI) contained endogenous PCNA, RPA, ubiquitin-activating enzyme E1, and ubiquitin conjugase Rad6, and eluted column fraction II (CFII) included pol delta, pol eta, and RFC. CFII supplemented with purified recombinant RPA and PCNA (wild type or K164R, in which lysine was replaced with arginine) was competent for DNA replication and TLS. K164R-PCNA complemented CFII for these activities to the same extent and efficiency as wild-type PCNA. CFII mixed with CFI (endogenous PCNA, E1, Rad6) exhibited enhanced DNA replication activity, but the same TLS efficiency determined with the purified proteins. These results demonstrate that PCNA ubiquitylation at K164 of PCNA is not required in vitro for pol eta to gain access to replication complexes at forks stalled by T (wedge)T and to catalyze TLS across this dimer.  相似文献   

10.
Cell survival after DNA damage depends on specialized DNA polymerases able to perform DNA synthesis on imperfect templates. Most of these enzymes belong to the recently discovered Y-family of DNA polymerases, none of which has been previously described in plants. We report here the isolation, functional characterization and expression analysis of a plant representative of the Y-family. This polymerase, which we have termed AtPolkappa, is a homolog of Escherichia coli pol IV and human pol kappa, and thus belongs to the DinB subfamily. We purified AtPolkappa and found a template-directed DNA polymerase, endowed with limited processivity that is able to extend primer-terminal mispairs. The activity and processivity of AtPolkappa are enhanced markedly upon deletion of 193 amino acids (aa) from its carboxy (C)-terminal domain. Loss of this region also affects the nucleotide selectivity of the enzyme, leading to the incorporation of both dCTP and dTTP opposite A in the template. We detected three cDNA forms, which result from the alternative splicing of AtPOLK mRNA and have distinct patterns of expression in different plant organs. Histochemical localization of beta-glucuronidase (GUS) activity in transgenic plants revealed that the AtPOLK promoter is active in endoreduplicating cells, suggesting a possible role during consecutive DNA replication cycles in the absence of mitosis.  相似文献   

11.
Daube SS  Tomer G  Livneh Z 《Biochemistry》2000,39(2):348-355
Mutations caused by DNA damage lead to the development of cancer. The critical step in the formation of these mutations is the replication of unrepaired lesions in DNA by DNA polymerases, a process termed translesion replication. Using a newly developed method for preparation of gapped plasmids, containing a site-specific synthetic abasic site, we analyzed translesion replication with purified mammalian DNA polymerases delta and beta. DNA polymerase delta was found to be unable to replicate through the abasic site. Addition of the sliding DNA clamp PCNA, the clamp loader RFC, and ATP caused a drastic 30-fold increase in translesion replication. Thus, similar to Escherichia coli DNA polymerase III, the processivity accessory proteins enable DNA polymerase delta to bypass blocking lesions. Under comparable conditions, DNA polymerase beta was unable to bypass the abasic site, unless its concentration was greatly increased. Analysis of translesion replication products revealed a marked difference in the specificity of bypass: whereas 90% of bypass events by DNA polymerase delta holoenzyme involved insertion of a dAMP residue opposite the abasic site, DNA polymerase beta tended to skip over the abasic site, producing mainly minus frameshifts (73%). The significance of these results for in vivo translesion replication is discussed.  相似文献   

12.
Mammalian DNA polymerase kappa (pol kappa), a member of the UmuC/DinB nucleotidyl transferase superfamily, has been implicated in spontaneous mutagenesis. Here we show that human pol kappa copies undamaged DNA with average single-base substitution and deletion error rates of 7 x 10(-3) and 2 x 10(-3), respectively. These error rates are high when compared to those of most other DNA polymerases. pol kappa also has unusual error specificity, producing a high proportion of T.CMP mispairs and deleting and adding non-reiterated nucleotides at extraordinary rates. Unlike other members of the UmuC/DinB family, pol kappa can processively synthesize chains of 25 or more nucleotides. This moderate processivity may reflect a contribution of C-terminal residues, which include two zinc clusters. The very low fidelity and moderate processivity of pol kappa is novel in comparison to any previously studied DNA polymerase, and is consistent with a role in spontaneous mutagenesis.  相似文献   

13.
Among several hypotheses to explain how translesion synthesis (TLS) by DNA polymerase eta (pol eta) suppresses ultraviolet light-induced mutagenesis in vivo despite the fact that pol eta copies DNA with low fidelity, here we test whether replication accessory proteins enhance the fidelity of TLS by pol eta. We first show that the single-stranded DNA binding protein RPA, the sliding clamp PCNA, and the clamp loader RFC slightly increase the processivity of yeast pol eta and its ability to recycle to new template primers. However, these increases are small, and they are similar when copying an undamaged template and a template containing a cis-syn TT dimer. Consequently, the accessory proteins do not strongly stimulate the already robust TT dimer bypass efficiency of pol eta. We then perform a comprehensive analysis of yeast pol eta fidelity. We show that it is much less accurate than other yeast DNA polymerases and that the accessory proteins have little effect on fidelity when copying undamaged templates or when bypassing a TT dimer. Thus, although accessory proteins clearly participate in pol eta functions in vivo, they do not appear to help suppress UV mutagenesis by improving pol eta bypass fidelity per se.  相似文献   

14.
An assay that measures synchronized, processive DNA replication by Escherichia coli DNA polymerase III holoenzyme was used to reveal replacement of pol III by the specialized lesion bypass DNA polymerase IV when the replicative polymerase is stalled. When idled replication is restarted, a rapid burst of pol III-catalyzed synthesis accompanied by approximately 7-kb full-length products is strongly inhibited by the presence of pol IV. The production of slower-forming, shorter length DNA reflects a rapid takeover of DNA synthesis by pol IV. Here we demonstrate that pol IV rapidly (<15 s) obstructs the stable interaction between pol III* and the beta clamp (the lifetime of the complex is >5 min), causing the removal of pol III* from template DNA. We propose that the rapid replacement of pol III* on the beta clamp with pol IV is mediated by two processes, an interaction between pol IV and the beta clamp and a separate interaction between pol IV and pol III*. This newly discovered property of pol IV facilitates a dynamic exchange between the two free polymerases at the primer terminus. Our study suggests a model in which the interaction between pol III* and the beta clamp is mediated by pol IV to ensure that DNA replication proceeds with minimal interruption.  相似文献   

15.
In fulfilling its biosynthetic roles in nuclear replication and in several types of repair, DNA polymerase δ (pol δ) is assisted by replication protein A (RPA), the single-stranded DNA-binding protein complex, and by the processivity clamp proliferating cell nuclear antigen (PCNA). Here we report the effects of these accessory proteins on the fidelity of DNA synthesis in vitro by yeast pol δ. We show that when RPA and PCNA are included in reactions containing pol δ, rates for single base errors are similar to those generated by pol δ alone, indicating that pol δ itself is by far the prime determinant of fidelity for single base errors. However, the rate of deleting multiple nucleotides between directly repeated sequences is reduced by ~10-fold in the presence of either RPA or PCNA, and by ≥90-fold when both proteins are present. We suggest that PCNA and RPA suppress large deletion errors by preventing the primer terminus at a repeat from fraying and/or from relocating and annealing to a downstream repeat. Strong suppression of deletions by PCNA and RPA suggests that they may contribute to the high replication fidelity needed to stably maintain eukaryotic genomes that contain abundant repetitive sequences.  相似文献   

16.
Unrepaired replication-blocking DNA lesions are bypassed by specialized DNA polymerases, members of the Y super-family. In Escherichia coli the major lesion bypass DNA polymerase is pol V, whereas the function of its homologue, pol IV, is not fully understood. In vivo analysis showed that pol V has a major role in bypass across an abasic site analog, with little or no involvement of pol IV. This can result from the inability of pol IV to bypass the abasic site, or from in vivo regulation of its activity. In vitro analysis revealed that purified pol IV, in the presence of the beta subunit DNA sliding clamp, and the gamma complex clamp loader, bypassed a synthetic abasic site with very high efficiency, reaching 73% in 2 min. Bypass was observed also in the absence of the processivity proteins, albeit at a 10- to 20-fold lower rate. DNA sequence analysis revealed that pol IV skips over the abasic site, producing primarily small deletions. The RecA protein inhibited bypass by pol IV, but this inhibition was alleviated by single-strand binding protein (SSB). The fact that the in vitro bypass ability of pol IV is not manifested under in vivo conditions suggests the presence of a regulatory factor, which might be involved in controlling the access of the bypass polymerases to the damaged site in DNA.  相似文献   

17.
An important not yet fully understood event in DNA replication is the DNA polymerase (pol) switch from pol alpha to pol delta. Indirect evidence suggested that the clamp loader replication factor C (RF-C) plays an important role, since a replication competent protein complex containing pol alpha, pol delta and RF-C could perform pol switching in the presence of proliferating cell nuclear antigen (PCNA). By using purified pol alpha/primase, pol delta, RF-C, PCNA and RP-A we show that: (i) RF-C can inhibit pol alpha in the presence of ATP prior to PCNA loading, (ii) RF-C decreases the affinity of pol alpha for the 3'OH primer ends, (iii) the inhibition of pol alpha by RF-C is released upon PCNA loading, (iv) ATP hydrolysis is required for PCNA loading and subsequent release of inhibition of pol alpha, (v) under these conditions a switching from pol alpha/primase to pol delta is evident. Thus, RF-C appears to be critical for the pol alpha to pol delta switching. Based on these results, a model is proposed in which RF-C induces the pol switching by sequestering the 3'-OH end from pol alpha and subsequently recruiting PCNA to DNA.  相似文献   

18.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

19.
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.  相似文献   

20.
The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号