首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Lieber  C Y He  I Kirillova    M A Kay 《Journal of virology》1996,70(12):8944-8960
In vivo gene transfer of recombinant E1-deficient adenoviruses results in early and late viral gene expression that elicits a host immune response, limiting the duration of transgene expression and the use of adenoviruses for gene therapy. The prokaryotic Cre-lox P recombination system was adapted to generate recombinant adenoviruses with extended deletions in the viral genome (referred to here as deleted viruses) in order to minimize expression of immunogenic and/or cytotoxic viral proteins. As an example, an adenovirus with a 25-kb deletion that lacked E1, E2, E3, and late gene expression with viral titers similar to those achieved with first-generation vectors and less than 0.5% contamination with E1-deficient virus was produced. Gene transfer was similar in HeLa cells, mouse hepatoma cells, and primary mouse hepatocytes in vitro and in vivo as determined by measuring reporter gene expression and DNA transfer. However, transgene expression and deleted viral DNA concentrations were not stable and declined to undetectable levels much more rapidly than those found for first-generation vectors. Intravenous administration of deleted vectors in mice resulted in no hepatocellular injury relative to that seen with first-generation vectors. The mechanism for stability of first-generation adenovirus vectors (E1a deleted) appeared to be linked in part to their ability to replicate in transduced cells in vivo and in vitro. Furthermore, the deleted vectors were stabilized in the presence of undeleted first-generation adenovirus vectors. These results have important consequences for the development of these and other nonintegrating vectors for gene therapy.  相似文献   

2.
The retinal pigment epithelium is uniquely suited to gene therapy that uses lipid-mediated DNA transfer due to its high phagocytic activity in situ. We compared the relative efficacy of phagocytosis on the uptake of labeled plasmid vectors by retinal pigment epithelial and ciliary epithelial cells in vitro. Relative levels of endocytosis were then compared with the efficiency of marker transgene expression in these cells. Human retinal pigment epithelial and ciliary epithelial cells from a single donor were isolated and expanded in vitro. Polyplex-mediated transfections were performed using a rhodamine-labeled expression vector for green fluorescent protein. Rhodamine-labeled endosomes were examined by fluorescence microscopy at different time points. Rhodamine labeling and green fluorescent protein expression were analyzed by flow cytometry 48 h after transfection. These gene transfer studies showed that expression of transgenes does occur in both human retinal pigment epithelial and ciliary epithelial cells in vitro. Endocytosis of labeled plasmid vectors occurs at a significantly higher number and density in retinal pigment epithelial cells than in ciliary epithelial cells (P < 0.04). However, the efficiency of marker transgene expression is similar in the two cell types. These studies demonstrate that the higher intrinsic phagocytic activity does not enhance the efficacy of transgene expression in retinal pigment epithelial cells in vitro. Both human retinal pigment epithelial and ciliary epithelial cells are competent recipients for lipid-mediated gene transfer, and transgene expression occurs at similar levels in both cell types.  相似文献   

3.
Systemic application of first-generation adenovirus induces pathogenic effects in the liver. To begin unraveling the mechanisms underlying early liver toxicity after adenovirus infusion, particularly the role of macrophage activation and expression of viral genes in transduced target cells, first-generation adenovirus or adenovirus vectors that lacked most early and late gene expression were administered to C3H/HeJ mice after transient depletion of Kupffer cells by gadolinium chloride treatment. Activation of NF-kappaB, and the serum levels of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) were studied in correlation with liver damage, apoptosis, and hepatocellular DNA synthesis. While Kupffer cell depletion nearly eliminated adenovirus-induced TNF release, it resulted in a more robust IL-6 release. These responses were greatly reduced in animals receiving the deleted adenovirus. Although there were quantitative differences, NF-kappaB activation was observed within minutes of first-generation or deleted adenovirus vector administration regardless of the status of the Kupffer cells, suggesting that the induction is related to a direct effect of the virus particle on the hepatocyte. Early liver toxicity as determined by serum glutamic-pyruvic transaminase elevation and inflammatory cell infiltrates appeared to be dependent on adenovirus-mediated early gene expression and intact Kupffer cell function. Kupffer cell depletion had little effect on adenovirus-mediated hepatocyte apoptosis but did increase hepatocellular DNA synthesis. Finally, Kupffer cell depletion decreased the persistence of transgene (human alpha1-antitrypsin [hAAT]) expression that was associated with a more pronounced humoral immune response against hAAT. The elucidation of these events occurring after intravenous adenovirus injection will be important in developing new vectors and transfer techniques with reduced toxicity.  相似文献   

4.
G P Gao  Y Yang    J M Wilson 《Journal of virology》1996,70(12):8934-8943
Recombinant adenoviruses with E1 sequences deleted efficiently transfer genes into a wide variety of target cells. Antigen- and nonantigen-specific responses to the therapy lead to toxicity, loss of transgene expression, and difficulties with vector readministration. We have created new cell lines that allowed the isolation of more disabled adenovirus vectors that have both E1 and E4 deletions. Studies with murine models of liver-directed gene therapy indicated that the E1- and E4-deleted vector expresses fewer virus proteins and induces less apoptosis, leading to blunted host responses and an improved safety profile. The impact of the E4 deletion on the stability of vector expression was confounded by immune responses to the transgene product, which in this study was beta-galactosidase. When transgene responses were eliminated, the doubly deleted vector was substantially more stable in mouse liver than was the E1-deleted construct. These studies indicate that adenovirus vectors with both E1 and E4 deletions may have advantages in terms of safety and efficacy over first-generation constructs for liver-directed gene therapy.  相似文献   

5.
The immune response to adenoviral vectors can induce inflammation and loss of transgene expression in transfected tissues. This would limit the use of adenovirus-mediated gene transfer in disease states in which long-term gene expression is required. While studying the effect of the anti-adenoviral immune response in transplantation, we found that transgene expression persisted in cardiac isografts transfected with an adenovirus encoding beta-galactosidase. Transfected grafts remained free of inflammation, despite the presence of an immune response to the vector. Thus, adenovirus-mediated gene transfer may have therapeutic value in cardiac transplantation and heart diseases. Furthermore, immunological limitations of adenoviral vectors for gene therapy are not universal for all tissue types.  相似文献   

6.
The persistence of transgene expression has become a hallmark for adenovirus vector evaluation in vivo. Although not all therapeutic benefit in gene therapy is reliant on long-term transgene expression, it is assumed that the treatment of chronic diseases will require significant persistence of expression. To understand the mechanisms involved in transgene persistence, a number of adenovirus vectors were evaluated in vivo in different strains of mice. Interestingly, the rate of vector genome clearance was not altered by the complete deletion of early region 4 (E4) in our vectors. The GV11 (E1- E4-) vector genome cleared with a similar kinetic profile as the GV10 (E1-) vector genome in immunocompetent and immunocompromised mice. These results suggest that the majority of adenovirus vector genomes are eliminated from transduced tissue via a mechanism(s) independent of T-cell, B-cell, and NK cell immune mechanisms. While the levels of persistence of transgene expression in liver or lung transduced with GV10 and GV11 vectors expressing beta-galactosidase, cystic fibrosis transmembrane conductance regulator, or secretory alkaline phosphatase were similar in immunocompetent mice, a marked difference was observed in immunocompromised animals. Levels of transgene expression initially from both GV10 and GV11 vectors were the same. However, GV11 transgene expression correlated with loss of vector genome, while GV10 transgene expression persisted at a high level. Coadministration and readministration of GV10 vectors showed that E4 provided in trans could activate transgene expression from the GV11 vector genome. While transgene expression activity per genome from the GV10 vector is clearly activated, expression from a cytomegalovirus promoter expression cassette in a GV11 vector appeared to be further inactivated as a function of time. Understanding the molecular mechanisms underlying these expression effects will be important for developing persistent adenovirus vectors for chronic applications.  相似文献   

7.
BACKGROUND: Ocular neovascular disorders, such as diabetic retinopathy and age-related macular degeneration, are the principal causes of blindness in developed countries. Current treatments are of limited efficacy, whereas a therapy based on intraocular gene transfer of angiostatic factors represents a promising alternative. For the first time we have explored the potential of helper-dependent adenovirus (HD-Ad), the last generation of Ad vectors, in the therapy of retinal neovascularization. METHODS: We first analyzed efficiency and stability of intraretinal gene transfer following intravitreous injection in mice. A HD-Ad vector expressing green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter (HD-Ad/GFP) was compared with a first-generation (E1/E3-deleted) Ad vector carrying an identical GFP expression cassette (FG-Ad/GFP). We also constructed HD-Ad vectors expressing a soluble form of the VEGF receptor (sFlt-1) in a constitutive (HD-Ad/sFlt-1) or doxycycline (dox)-inducible (HD-Ad/S-M2/sFlt-1) manner and tested their therapeutic efficacy upon intravitreous delivery in a rat model of oxygen-induced retinopathy (OIR). RESULTS: HD-Ad/GFP promoted long-lasting (up to 1 year) transgene expression in retinal Müller cells, in marked contrast with the short-term expression observed with FG-Ad/GFP. Intravitreous injection of HD-Ad vectors expressing sFlt-1 resulted in detectable levels of sFlt-1 and inhibited retinal neovascularization by more than 60% in a rat model of OIR. Notably, the therapeutic efficacy of the inducible vector HD-Ad/S-M2/sFlt-1 was strictly dox-dependent. CONCLUSIONS: HD-Ad vectors enable stable gene transfer and regulated expression of angiostatic factors following intravitreous injection and thus are attractive vehicles for the gene therapy of neovascular diseases of the retina.  相似文献   

8.
BACKGROUND: Sendai virus (SeV) is a new class of cytoplasmic RNA vector that is free from genotoxicity that infects and multiplies in most mammalian cells, and directs high-level transgene expression. We improved the vector by deleting all of the envelope-related genes from the SeV genome and thus reducing its immunogenicity. METHODS: The matrix (M), fusion (F) and hemagglutinin-neuraminidase (HN) genes-deleted SeV vector (SeV/DeltaMDeltaFDeltaHN) was recovered in a newly established packaging cell line. Then, the generated SeV/DeltaMDeltaFDeltaHN vector was characterised by comparing with single gene-deleted type SeV vectors. RESULTS: This SeV/DeltaMDeltaFDeltaHN vector carrying the green fluorescent protein gene in place of the envelope-related genes could be propagated to a titer of more than 10(8) cell infectious units/ml. This vector showed an efficient transduction capability in vitro and in vivo, and the cytopathic effect and induction of neutralizing antibody in vivo were greatly reduced compared with those of single gene-deleted type SeV vectors. No activity of neutralizing antibody or anti-HN antibody was seen when SeV/DeltaMDeltaFDeltaHN was transduced ex vivo. Additional introduction of amino acid mutations that had been identified from SeV strains causing persistent infections was also effective for the reduction of cytopathic effects. CONCLUSIONS: The deletion of genes from the SeV genome and the additional mutation are very effective for reducing both the immunogenic and cytopathic reactions to the SeV vector. These modifications are expected to improve the safety and broaden the range of clinical applications of this new class of cytoplasmic RNA vector.  相似文献   

9.
MicroRNA-restricted transgene expression in the retina   总被引:2,自引:0,他引:2  

Background

Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions.

Methodology/Principal Findings

To this end, we generated AAV2/5 vectors expressing EGFP and containing four tandem copies of miR-124 or miR-204 complementary sequences in the 3′UTR of the transgene expression cassette. These vectors were administered subretinally to adult C57BL/6 mice and Large White pigs. Our results demonstrate that miR-124 and miR-204 target sequences can efficiently restrict AAV2/5-mediated transgene expression to retinal pigment epithelium and photoreceptors, respectively, in mice and pigs. Interestingly, transgene restriction was observed at low vector doses relevant to therapy.

Conclusions

We conclude that microRNA-mediated regulation of transgene expression can be applied in the retina to either restrict to a specific cell type the robust expression obtained using ubiquitous promoters or to provide an additional layer of gene expression regulation when using cell-specific promoters.  相似文献   

10.
Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4(+) T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and to achieve safe and stable gene transfer in clinical trials.  相似文献   

11.
Zhang J  Wang Q  Zhao D  Cao X 《Cytotherapy》2007,9(4):386-396
BACKGROUND: The aim of this study was to observe the therapeutic effects of adenovirus-mediated LIGHT gene transfer in murine B16 melanoma in vivo. METHODS: C57BL/6 mice were inoculated subcutaneously with B16 cells to establish the murine melanoma model. The tumor-bearing mice were injected at the site of tumor inoculation with recombinant adenoviral vectors expressing the murine LIGHT gene. The tumor growth and survival period of tumor-bearing mice were observed. The splenic NK and CTL activity were measured in vitro by lactate dehydrogenase (LDH) release assay. The amounts of cytokines were determined with ELISA kits. RESULTS: The LIGHT gene could be efficiently transduced into tumor tissue after injection of Ad-LIGHT. Treatment with Ad-LIGHT significantly inhibited the tumor growth and prolonged the survival period of the tumor-bearing mice. The splenic NK and CTL activity of the mice was also enhanced after LIGHT gene transfer. The production of IL-2 and IFN-gamma from lymphocytes derived from mice treated with Ad-LIGHT was increased significantly compared with control groups. DISCUSSION: Our results indicate that local expression of the LIGHT gene can induce potent anti-tumor immunity and may be a promising treatment strategy for melanoma.  相似文献   

12.
Biology of E1-deleted adenovirus vectors in nonhuman primate muscle   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenovirus vectors have been studied as vehicles for gene transfer to skeletal muscle, an attractive target for gene therapies for inherited and acquired diseases. In this setting, immune responses to viral proteins and/or transgene products cause inflammation and lead to loss of transgene expression. A few studies in murine models have suggested that the destructive cell-mediated immune response to virally encoded proteins of E1-deleted adenovirus may not contribute to the elimination of transgene-expressing cells. However, the impact of immune responses following intramuscular administration of adenovirus vectors on transgene stability has not been elucidated in larger animal models such as nonhuman primates. Here we demonstrate that intramuscular administration of E1-deleted adenovirus vector expressing rhesus monkey erythropoietin or growth hormone to rhesus monkeys results in generation of a Th1-dependent cytotoxic T-cell response to adenovirus proteins. Transgene expression dropped significantly over time but was still detectable in some animals after 6 months. Systemic levels of adenovirus-specific neutralizing antibodies were generated, which blocked vector readministration. These studies indicate that the cellular and humoral immune response generated to adenovirus proteins, in the context of transgenes encoding self-proteins, hinders long-term transgene expression and readministration with first-generation vectors.  相似文献   

13.
14.
Recombinant adenoviruses (Ads) are useful tools in gene transfer because they are able to infect a wide variety of tissues and cell types and do not require a replicating target cell. However, transgene expression is only transient due to host innate and acquired immune responses to the virus. Most recombinant Ads have deletions of early region 3 (E3) genes, allowing more space for insertion of the transgene. Although the E3 region is not necessary for infection, it has been observed that these "nonessential" genes have immunomodulatory properties. We demonstrate here that the E3 region of Ad inhibits the activation of NF-kappa B induced by tumor necrosis factor alpha (TNF-alpha) and interleukin-1. Ad E3 is able to prevent NF-kappa B from entering the nucleus, where it is normally active. Ad E3 also appears to function by preventing the activation of the kinase complex, IKK, which is responsible for phosphorylation of I kappa B that retains NF-kappa B in the cytoplasm in an inactive state. The prevention of NF-kappa B activation has been mapped to a complex of two of the seven E3 products, E3-10.4K and E3-14.5K (RID alpha/beta). These and other studies indicate that, by using Ad vectors containing the E3 region, it may be possible to reduce the harmful proinflammatory effects of TNF-alpha and other cytokines that compromise the use of Ad gene therapy vectors in vivo.  相似文献   

15.
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.  相似文献   

16.
17.
18.
Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy.  相似文献   

19.
Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies.  相似文献   

20.
BACKGROUND: Gene transfer into a fetus or neonate can be a fundamental approach for treating genetic diseases, particularly disorders that have irreversible manifestations in adulthood. Although the potential utility of this technique has been suggested, the advantages of neonatal gene transfer have not been widely investigated. Here, we tested the usefulness of neonatal gene transfer using adeno-associated virus (AAV) vectors by comparing the administration routes and vector doses. METHODS: To determine the optimal administration route, neonates were subjected to intravenous (i.v.) or intraperitoneal (i.p.) injections of AAV5-based vectors encoding the human coagulation factor IX (hfIX) gene, and the dose response was examined. To determine the distribution of transgene expression, vectors encoding lacZ or luciferase (luc) genes were used and assessed by X-gal staining and in vivo imaging, respectively. After the observation period, the vector distribution across tissues was quantified. RESULTS: The factor IX concentration was higher in i.p.-injected mice than in i.v.-injected mice. All transgenes administered by i.p. injection were more efficiently expressed in neonates than in adults. The expression was confined to the peritoneal tissue. Interestingly, a sex-related difference was observed in transgene expression in adults, whereas this difference was not apparent in neonates. CONCLUSIONS: AAV vector administration to neonates using the i.p. route was clearly advantageous in obtaining robust transgene expression. Vector genomes and transgene expression were observed mainly in the peritoneal tissue. These findings indicate the advantages of neonatal gene therapy and would help in designing strategies for gene therapy using AAV vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号