首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The properties of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase (EC 3.1.3.4) activities of rat lung have been studied in microsomal and cytosol preparations and compared with the properties of the membrane-bound phosphatidate-dependent activities. 2. The microsomal phosphatidic acid phosphatase displayed a prominent pH optimum at 6.5 with a minor peak which varied between 7.5--8 in different experiments. With the cytosol, the major activity was at the higher pH (7.5--8.0) but a distinct optimum was also observed at pH 6.0--6.5. With the membrane-bound substrate, a single broad optimum was observed between pH 7.4 and 8.0 with the cytosol and 6.5--7.5 with the microsomal fraction. 3. Subcellular fractionation studies revealed that the microsomal fraction possessed the greatest proportion of the total phosphatidic acid phosphatase activity and the highest relative specific activity. However, studies with marker enzymes indicated that the aqueously dispersed phosphatidate-dependent activity could be present in plasma membrane, lysosomes and osmiophilic lamellar bodies as well as in the endoplasmic reticulum. 4. The aqueously dispersed phosphatidic acid-dependent activities present in the microsomal and supernatant fractions were inhibited by Ca2+, Mn2+, F- and by high concentrations of Mg2+. In contrast to the membrane-bound phosphatidate-dependent activities, there was little Mg2+ stimulation and only a very slight inhibitory effect was noted with EDTA. A small EDTA-dependent Mg2+ stimulation could be observed with the microsomal fraction but only at the lower pH optimum (6.5). 5. The presence of a number of phosphate esters tended to stimulate rather than inhibit the microsomal activity, indicating that the hydrolase is relatively specific for lipid substrates. Marked inhibitions were noted with lysophosphatidic acid and phosphatidylglycerol phosphate. Phosphatidylcholine produced a slight inhibition. 6. The results indicate that the bulk of the aqueously dispersed phosphatidate-dependent phosphatidic acid phosphatase activities of rat lung microsomes and cytosol is not related to the activities observed with membrane-bound phosphatidate. The Mg2+-dependent hydrolase activities may be synonymous. However, unequivocal conclusions will only be possible when the polypeptide or polypeptides responsible for these activities can be purified.  相似文献   

2.
The 104,000 × g supernatant fraction from rat lung contains a greater proportion of the phosphatidic acid phosphatase activity toward membrane-bound phosphatidic acid than the microsomal fraction. The microsomal fraction is more effective in hydrolyzing aqueously dispersed phosphatidic acid. The effects of various ions and chelators, particularly Mg2+ and EDTA, suggest that these two activities are distinct. These results indicate that the supernatant fraction of rat lung contains a phosphatidic acid phosphatase activity which may play an important role in pulmonary glycerolipid synthesis.  相似文献   

3.
4.
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.  相似文献   

5.
6.
1. The developmental patterns of the phosphatidic acid phosphohydrolase activities in developing rabbit lung were determined using both aqueously dispersed phosphatidic acid (PAaq) and membrane-bound phosphatidic acid (PAmb) as the substrates. 2. The specific activities and the total activities of the PAmb-dependent phosphohydrolase activities in the microsomes and to a lesser extent in the homogenates increased between 26 and 30 days gestation (term 31), but decreased in the adult. The PAaq-dependent activities demonstrated a smaller increase during late gestation and a decrease in the adult. 3. There was little change in either the Paaq- or the Pamb-dependent activities in the cytosol between 25 and 30 days gestation. The total activities per g lung were increased in the adult. 4. Fractionation of adult cytosol on Bio-Gel A5m revealed PAaq-dependent activities in the void volume (Vo) (50% total), a peak with an apparent molecular mass (Mr) = 150 kdaltons (25% total) and a peak with Mr = 110 kdaltons (25% total). The PAaq-dependent peak with Mr = 150 kdaltons was not detected in the fetal cytosols. 5. Gel filtration revealed PAmb-dependent activity in the Vo (15% total), a major peak with an apparent Mr = 390 kdaltons (44% total) and minor peaks with Mr = 240 kdaltons (16% total) and Mr = 110 kdaltons (24% total). Little change was observed during development. 6. Thermal denaturation studies on he PAmb-dependent activities in the cytosols produced biphasic curves with a rapidly inactivated component and a relatively heat-stable component. The thermal denaturation profiles for the PAmb-dependent activities remained relatively unaltered throughout fetal development. The thermal denaturation profiles of the PAaq-dependent activities in the fetal cytosols were also biphasic. In contrast, the inactivation profiles of the PAaq-dependent activities in adult cytosol were monophasic.  相似文献   

7.
Rat lung cytosol and microsomal fractions both contain phosphohydrolase activity towards membrane-bound phosphatidic acid (PAmb) and aqueously dispersed phosphatidic acid (PAaq) which cannot be explained through contamination with the other fraction. The phosphohydrolase activities with PAaq demonstrated Km and Vmax values which were more than an order of magnitude greater than those observed with PAmb and with vesicles prepared from the lipids extracted from [32P]PA-labelled microsomes. The PAaq-dependent activities in both fractions were stimulated by preparing mixed liposomes with phosphatidylcholine. The PAmb-dependent activities in rat lung microsomes and cytosol were markedly stimulated by high concentrations of Triton X-100 and Nonidet P-40. The PAmb- and PAaq-dependent activities in the microsomes were stimulated by deoxycholate. Although no difference was observed in the inhibition profiles of the PAmb- and PAaq-dependent activities of the cytosol in the presence of various mercurials, the PAmb-dependent activity in the microsomes was somewhat more susceptible than the PAaq-dependent activity. The PAmb-dependent activities in both fractions were more susceptible to inhibition by iodoacetamide. These results support the view that separate rat lung enzymes were involved in the hydrolysis of PAmb and PAaq. The relative abilities of rat lung cytosol and microsomes to hydrolyse PA endogenously generated on the microsomes were compared using relative concentrations of cytosol corresponding to the levels in intact rat lung. During the initial period (5-10 min) the cytosol phosphohydrolase activity was more effective than the microsomal activity. At later stages (10-20 min), the rates were comparable.  相似文献   

8.
9.
The activity of the soluble form of phosphatidic acid phosphatase in rat liver was stimulated about 2.5-fold by inclusion of mevinolin, a competitive hydroxymethylglutaryl-CoA reductase inhibitor, in the diet (0.1%). The stimulatory effect of mevinolin was present also after dietary addition of cholestyramine (5%) or intraperitoneal administration of ethanol. Addition of cholesterol (2%) to the diet totally abolished the stimulation by mevinolin on phosphatidic acid phosphatase. The results support a correlation between the synthesis of the rate-limiting enzyme in cholesterol biosynthesis and the activity of the apparent rate-limiting enzyme in triacylglycerol biosynthesis.  相似文献   

10.
11.
Phosphatidic acid phosphatase (EC 3.1.3.4) was purified 30-fold by ammonium sulfate fractionation and hydroxyapatite chromatography from the soluble fraction of rat liver. ADP was found to stimulate the enzyme activity with half-maximal stimulation at 0.2 mM. Similar effects were seen when ADP was replaced by GDP or CDP. In contrast, ATP inhibited the enzyme; half-maximal inhibition observed at 0.2 mM. Again, the degree of inhibition did not differ when GTP or CTP replaced ATP. Thus, the structure of the base part of the nucleotide was not critical for mediating these effects. The positions of the phosphate groups in the nucleotide structure were however found to be of importance for the enzyme activity. Variations in the structure of the phosphate ester bound at the 5'-position had a pronounced effect on phosphatidic acid phosphatase activity. The effect of nucleotides depended on pH, and the inhibition by ATP was more pronounced at pH levels lower than 7.0, whereas the stimulatory effect of ADP was virtually the same from pH 6.0 to pH 8.0. The enzyme showed substrate saturation kinetics with respect to phosphatidic acid, with an apparent Km of 0.7 mM. Km increased in the presence of ATP, whereas both apparent Vmax and Km increased in the presence of ADP, suggesting different mechanisms for the action of the two types of nucleotides. The results indicated that physiological levels of nucleotides with a diphosphate or a triphosphate ester bound at the 5'-position of the ribose moiety influenced the activity of phosphatidic acid phosphatase. The possibility is discussed that these effects might be of importance for the regulation of triacylglycerol biosynthesis.  相似文献   

12.
Inhibition of phosphatidic acid phosphatase by palmitoyl-coA   总被引:1,自引:0,他引:1  
  相似文献   

13.
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.  相似文献   

14.
Thiophosphatidic acid (1,2-diacyl-sn-glycero-3-phosphorothioate; thioPA) was chemically synthesized from egg phosphatidylcholine-derived 1,2-diacylglycerol and PSCl3 and tested for its effects on enzymes which utilize phosphatidic acid (PA) in phospholipid biosynthesis. The compound was not a substrate for rat liver cytosolic PA phosphatase and strongly inhibited this enzyme activity. ThioPA was also a potent inhibitor of purified membrane-associated PA phosphatase from Saccharomyces cerevisiae in a competitive manner and exhibited an apparent Ki = 60 microM. In contrast, purified CDPdiacylglycerol synthase (PA:CTP cytidylyltransferase) from this organism was able to convert thioPA to CDP-diacylglycerol. The apparent Vmax for thioPA was 7-fold lower than that for PA, whereas the apparent Km for thioPA (70 microM) was 4-fold lower than that for PA. Calculation of the specificity constant (Vmax/Km) demonstrated that PA was the preferred substrate. These properties of thioPA indicate that this substance may prove useful in studies of phospholipid metabolism and function.  相似文献   

15.
Neurotransmitter receptors may exhibit transient linkage to specific developmental processes involved in physiological adaptation to extrauterine life and in cell maturation. We have examined the responsiveness of the developing rat lung to beta-adrenergic agonists, using fluid reabsorption, phosphatidic acid phosphatase (an enzyme involved in surfactant synthesis) and ornithine decarboxylase (an enzyme related to cellular development) as markers of these activities. The ability of beta-adrenergic agonists to stimulate phosphatidic acid phosphatase and to cause liquid reabsorption first appeared just before birth, a period in which few receptor binding sites are present; the reactivity of both these processes declined after birth, but the enzymatic stimulation reached a second peak of response during the second and third postnatal weeks. The ability of beta-adrenergic challenge to elicit stimulation of lung phosphatidic acid phosphatase then declined into adulthood, despite the fact that receptor binding sites are increasing during the same period. Lung ornithine decarboxylase activity was poorly linked to beta-receptors in the immediate perinatal period and reached a peak of reactivity during the late postnatal period in which the coupling to phosphatidic acid phosphatase was lost. The pattern for phosphatidic acid phosphatase and liquid content was selective for the lung, as no stimulatory effects were seen for these variables in the liver, despite the comparable beta-adrenergic effects on ornithine decarboxylase in the two tissues. These data suggest that, during development, the coupling of receptors to specific cellular events is more important than the number of receptor sites in determining the pattern of physiological and cellular responses mediated by neurotransmitters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We purified phosphatidic acid phosphatase (EC 3.1.3.4) 2300-fold from porcine thymus membranes. The enzyme was solubilized with beta-octyl glucoside and Triton X-100 and fractionated with ammonium sulfate. The purification was then achieved by chromatography in the presence of Triton X-100 with Sephacryl S-300, hydroxylapatite, heparin-Sepharose, and Affi-Gel Blue. The final enzyme preparation gave a single band of M(r) = 83,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. The native enzyme, on the other hand, was eluted at M(r) = 218,000 in gel filtration chromatography with Superose 12 in the presence of Triton X-100. The enzyme was judged to be specific to phosphatidic acid, since excess amounts of dicetylphosphate or lysophosphatidic acid did not inhibit the enzyme activity. In this respect, the enzyme was inhibited by 1,2-diacylglycerol but not by 1- or 2-monoacylglycerol and triacylglycerol. The enzyme required Triton X-100 or deoxycholate for its activity. Although the enzyme appeared to be an integral membrane protein, we could not detect its phospholipid dependencies. The activity was independent of Mg2+, and other cations were strongly inhibitory. The specific enzyme activity was 15 mumol/min/mg of protein when assayed using phosphatidic acid as Triton X-100 mixed micelles. The Km for the surface concentration of phosphatidic acid was 0.30 mol%. The enzyme was inhibited by sphingosine and chloropromazine, and less potently, by propranolol and NaF. The enzyme was insensitive to thio-reactive reagents like N-ethylmaleimide.  相似文献   

17.
Carman GM 《生物学前沿》2011,6(3):172-176
Phosphatidic acid phosphatase is a fat-regulating enzyme that plays a major role in controlling the balance of phosphatidic acid (substrate) and diacylglycerol (product), which are lipid precursors used for the synthesis of membrane phospholipids and triacylglycerol. Phosphatidic acid is also a signaling molecule that triggers phospholipid synthesis gene expression, membrane expansion, secretion, and endocytosis. While this important enzyme has been known for several decades, its gene was only identified recently from yeast. This discovery showed the importance of phosphatidic acid phosphatase in lipid metabolism in yeast as well as in higher eukaryotes including humans.  相似文献   

18.
A membrane fraction from calf thymocytes was used to investigate molecular and catalytic properties of membrane-bound alkaline phosphatase (ortho-phosphoric-monoester phosphohydrolase EC 3.1.3.1). The principal findings were: 1. Solubilization of membranes with the non-ionic detergent Triton X-100 increases alkaline phosphatase activity by 30-40%. The enzyme activity elutes in a single peak (Stokes' radius = 7.7 nm) after chromatography in Sepharose 6B in the presence of Triton X-100. The activity also sediments as a single component of approx. 6.4 S during centrifugation in sucrose gradients containing Triton X-100. 2. Ion-exchange chromatography and isoelectric focusing in the presence of Triton X-100 indicate substantial charge heterogeneity. Two overlapping bands, a peak at pH 5.92 with a pronounced shoulder at pH 5.29, are apparent by isoelectric focusing. 3. The pH optimum for hydrolysis of p-nitrophenylphosphate (pNPhP) by the undissolved enzyme(s) is 9.57. Half-maximal activity occurs at pH 8.65 and ph 10.45. Triton X-100 has no effect on the pH profile. 4. Catalytic activity is affected by amines, especially analogues of ethanolamine. Diethanolamine exerts a unique stimulatory effect, but does not change the pH dependency. Increasing the concentration of diethanolamine from 0 to 1 M causes a 6-fold increase in Km and a 10-fold increase in the rate of hydrolysis of pNPhP. Glycine is inhibitory. 5. EDTA causes an irreversible loss of activity with t1/2 (1 mM EDTA, pH 8.2, 23 degrees C) = 3.5 h. Optimal activity is achieved in 0.1--1.0 mM Mg2+, although this does not cause the degree of activation reported to occur with the purified enzymes. Other divalent ions are inhibitory. Concentrations required to reduce activity to 50% of control are: Zn2+, 4.0 muM (no added Mg2+) and 30 muM (in the presence of 1 mM Mg2+); Mn2+, 0.25 mM (+/- Mg2+); Ca2+, 20 mM (+/- Mg2+). 6. Monovalent cations have little effect on activity. In the absence of added Mg2+, 50--150 mM Na+ is partially inhibitory, but markedly less so in the presence of 1 mM Mg2+. K+ has no significant effect. 7. Of the substrates tested, pNPhP (Km = 44 muM) was most rapidly hydrolyzed. Other substrates (rate relative to pNPhP) were alpha-naphthylphosphate (0.79), 2'-AMP (0.80), 5'-AMP (0.70), 3'-AMP (0.63), alpha-glycerophosphate (0.47) and glucose 6-phosphate (0.35). Phosphodiesterase activity was less than or equal to 10% of the phosphomonoesterase activity (for pNPhP) as evidenced by the lack of hydrolysis of bis(p-nitrophenyl)-phosphate and cyclic 3',5'-AMP. The ability of these substances to inhibit hydrolysis of pNPhP reflected their capacity as substrates, i.e. the most inhibitory were the most rapidly hydrolyzed.  相似文献   

19.
Hepatic lysosomes have been fractionated by rate sedimentation and by isopycnic banding. In all experiments, the distribution of acid phosphatase differed from that of the other lysosomal enzymes. Evidence is presented that this difference is due not to the separation of lysosomes from different cell types, but simply reflects the membrane location of a part of the acid phosphatase.  相似文献   

20.
Three-dimensional structure of rat acid phosphatase.   总被引:1,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号