首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between protein synthesis and the incorporation of [3H]gibberellin A1 ([3H]GA1) into a 2,000xg pelletable (2KP) fraction from lettuce (Lactuca sativa L.) hypocotyl sections has been investigated. Concentrations of D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide (MDMP) between 10-7 M and 10-4 M caused increasing inhibition of growth, 2KP labelling and incorporation of [14C]leucine into soluble protein. Growth and 2KP radioactivity were highly correlated (r=0.996). Transfer to MDMP early or late in the course of GA response caused reductions in both growth and incorporation into the 2KP fraction. Exposure to the inhibitor had more effect at 4 h than at 20 h. The proportions of alkali-soluble and insoluble radioactivity in the 2KP fraction were also altered by this treatment. The implications of these findings are discussed.Abbreviations GA1 gibberellin A1 - MDMP D-2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide - 2KP a2,000xg pelletable fraction  相似文献   

2.
The properties of the water-soluble metabolites of [3H]gibberellin A1 ([3H]GA1) from lettuce (Lactuca sativa L.) hypocotyls were compared with those of authentic samples of gibberellin (GA) glucosyl esters and ethers. Partitioning against l-butanol at high and low pH was not an efficient method of differentiating between ester and ether conjugates of GA1 or GA3. Extraction into l-butanol at pH 2.5 was, however, useful as a group purification step. Gel-filtration on acrylamide indicated a mean molecular weight of ca. 600 for the polar material and high-voltage electrophoresis separated two compounds (LH 1 and LH 2) with differing charge properties. Both metabolites incorporated 14C from glucose and 3H from GA1. Subsequent enzymatic hydrolysis of LH 1 released material with identical properties to [14C]glucose together with a second uncharacterised component. Feeding with [3H]GA1 methyl ester greatly reduced the formation of LH 1 but not LH 2. The metabolites were provisionally identified as GA1-glucosyl ester (LH 1) and GA1-glucosyl ether (LH 2).Abbreviations GA gibberellin - LH1 GA3-glucosyl ester - LH2 GA1-glucosyl ether - HVE high voltage paper electrophoresis - TLC thin-layer chromatography  相似文献   

3.
Cell-free systems were prepared from germinating seed and seedlings of Phaseolus coccineus. Gibberellin A4 (GA4)-metabolising activity was detected in vitro using preparations from roots, shoots and cotyledons of germinating seed, but only up to 24 h after imbibition. Cell-free preparations from cotyledons converted [3H]GA4 to GA1, GA34, GA4-glucosyl ester and a putative O-glucoside of GA34, and, in addition converted [3H]GA1 to GA8. Preparations from embryo tissues contained 2-hydroxylase activity, converting [3H]GA4 to GA34 and [3H]GA1 to GA8.The presence of GA-metabolising enzymes was also indicated by in-vivo feeds of [3H]GA4 to epicotyls of intact 4-d-old seedlings, which resulted in the accumulation of GA1, GA8, GA3-3-O-glucoside, GA4-glucosyl ester, GA8-2-O-glucoside and a putative O-glucoside of GA34. Gibberellin A1 was the first metabolite detected, 15 min after application of [3H]GA4, but after 24 h most of the label was associated with GA8-2-O-glucoside. Over 90% of the recovered radioactivity was found in the shoot. Within the shoot, movement was preferentially acropetal, and was not dependent upon metabolism of the applied [3H]GA4.Abbreviations DEAE diethylaminoethyl - GAn gibberellin An - GPC gel permeation chromatography - HPLC-RC high performance liquid chromatography-radio counting - S-1 1000·g supernatant - UDP uridine 5-diphosphate  相似文献   

4.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

5.
The metabolism of GA29 during seed maturation in Pisum sativum cv. Progress No. 9 was further investigated. [17-13C1]GA29 was metabolised to a GA-catabolite (structure 3), with incorporation of the [13C] label from the GA29 substrate into the GA-catabolite being demonstrated by GC-MS. Quantitation of the GA-catabolite using GC-MS was achieved by adding GA-catabolite, labelled with [18O], to seed extracts as an internal standard. At least 50% conversion of [13C1]GA29 to [13C1]GA-catabolite was demonstrated with the build up of exogenous [13C1]GA-catabolite strictly paralleling the accumulation of native GA-catabolite. These results strongly suggest that conversion of GA29 to the GA-catabolite is a natural metabolic step occurring during the final stages of seed maturation. 25 g per seed of native GA-catabolite was recorded in 37 day old seeds. Some problems encountered in the analysis of extracts containing the GA-catabolite are discussed briefly.Abbreviations BSTFA bis(trifluoromethylsilyl)acetamide - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - Me methyl ester - SICM selected ion current monitoring - TMSi trimethylsilyl ether  相似文献   

6.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

7.
Elongation growth and gibberellin (GA9) metabolism in excised hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Exogenously supplied GA9 stimulates elongation of hypocotyl sections and this response is intermediate between that elicited by GA1 or GA20 and GA4/7 mixture. Although uptake of radioactivity from [3H]GA9 increases with time, this gibberellin does not accumulate in the tissue but is rapidly converted to a compound with HPLC properties resembling those of [3H]GA20. After 2 h incubation in [3H]GA9, the presumptive GA20 represents 90% of the acidic ethyl acetate-soluble radioactivity in the tissue. Radioactivity is also associated with an acidic butanol-soluble fraction containing two components resolvable by HVE. The major component is similar in electrophoretic properties to a GA-glucosyl ether while the other compares to a GA-glucosyl ester. Conversion of [3H]GA9 to its [3H]GA20-like metabolite is reduced by addition of carrier GA9 or GA4/7 at concentrations as low as 1 M, while GA1, GA3 and L-proline are without effect. Formation of the GA20-like compound can be blocked by the addition of 2,2-dipyridyl, and this inhibitory effect of dipyridyl can be reversed by addition of Fe2+. At 200 M dipyridyl, elongation growth as well as [3H]GA9 metabolism are reduced by 80%. The relationship of the metabolism of GA9 to the growth response is discussed.Abbreviations AB butanol-soluble - AE ethyl-acetate-soluble - GA gibberellin - GA1, GA4 gibberellin A1, gibberellin A4, etc. - TLC thin layer chromatography - HPLC high performance liquid chromatography - HVE high voltage electrophoresis  相似文献   

8.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

9.
Gibberellin (GA) metabolism from GA12-aldehyde was studied in cell-free systems from 2-d-old germinating embryos of barley. [14C]- or [17-2H2]Gibberellins were used as substrates and all products were identified by combined gas chromatography-mass spectrometry. Stepwise analysis demonstrated the conversion of GA12-aldehyde via the 13-deoxy pathway to GA51 and via the 13-hydroxylation pathway to GA29, GA1 and GA8. In addition, GA3 was formed from GA20 via GA5. We conclude that the embryo is capable of producing gibberellins that can induce -amylase production in the aleurone layer. There was no evidence for 12- or 18-hydroxylation and GA4 was neither synthesised nor metabolised by the system. All metabolically obtained GAs, with the exception of GA3, were also found as endogenous components of the cell-free system in spite of ammonium-sulfate precipitation and desalting steps.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography We thank Mrs. G. Bodtke and Mrs. B. Schattenberg for preparing the barley embryos and the Deutsche Forschungsgemeinschaft for supporting this work.  相似文献   

10.
The kinetics of the uptake of [3H]gibberellin A1 (GA1) by light- and dark-grown suspension-cultured cells of Spinacia oleracea (spinach) have been studied. Use of nonradioactive GA1 and gibberellic acid (GA3) show that the uptake has a saturable and a nonsaturable component. The nonsaturable component increases as the pH is lowered at a fixed concentration of [3H]GA1 and is probably caused by non-mediated diffusion of the uncharged protonated species of GA1. The saturable component is not the result of metabolic transformation or to GA1 binding to the cell wall and is suggested to represent the operation of a transport carrier for which GA1 and GA3 are substrates. Auxin, abscisic acid and a cytokinin did not alter the GA1 uptake. The Km is approx. 0.3 mol dm-3 at pH 4.4 in light- and dark-grown cells. The Vmax of the carrier is higher in the light-grown cells. The optimum pH for the carrier at a physiological GA1 concentration (3 nmol dm-3) was pH 4.0, with no activity detectable at pH 7.0. Both saturable and nonsaturable components were decreased by protonophores indicating that the pH gradient between the cells and the medium may be a component of the driving forces for both types of transport. Both the permeability coefficient for the undissociated GA1 and the ratio V max/K m for the carrier are lower than the corresponding values for the indole-3-acetic acid and abscisic acid carriers studied in other species.Abbreviations and symbols ABA abscisic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid - P permeability coefficient  相似文献   

11.
T. Górski  K. Górska 《Planta》1979,144(2):121-124
Using glass filters that transmit various spectral bands and different intensities of natural daylight, experiments with achenes of lettuce cv. Vanquard were performed. Germination during prolonged treatment depended both on the far red/red radiation ratio and on the irradiance. The promotive effect of red radiation present in natural light prevailed at low irradiances, the inhibitory effect of far red radiation at high irradiances. The dormancy imposed by prolonged white light of high intensity can be cancelled by transferring the achenes to darkness or to diffuse weak white light. The effects are obviously of the high irradiance response type; they are exerted by the same mechanism that causes seed dormancy under leaf canopies. Some considerations on the ecological significance of seed behaviour are given.Abbreviations FR far red radiation - R red radiation - HIR high irradiance response - Pfr the far red absorbing form of phytochrome - Pr the red absorbing form of phytochrome  相似文献   

12.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

13.
In a carrot (Daucus carota L.) cell line lacking the ability to undergo somatic embryogenasis, and in carrot and anise (Pimpinella anisum L.) cell lines in which embryogenesis could be regulated by presence or absence of 2,4-dichlorophen-oxyacetic acid (2,4-D), in the medium (+2,4-D=no embryogenesis,-2,4-D=embryo differentiation and development), the levels of endogenous gibberellin(s) (GA) were determined by the dwarfrice bioassay, and the metabolism of [3H]GA1 was followed. Embryos harvested after 14 d of subculture in-2,4-D had low levels (0.2–0.3 g g-1 dry weight) of polar GA (e.g. GA1-like), but much (3–22 times) higher levels of less-polar GA (GA4/7-like); GA1, GA4 and GA7 are native to these cultures. Conversely, the undifferentiated cells in a non-embryogenic strain, and proembryos of an embryogenic strain (+2,4-D) showed very high levels of polar GA (2.9–4.4 g g-1), and somewhat reduced levels of less-polar GA. Cultures of anise undergoing somatic embryo development (-2,4-D) metabolized [3H]GA1 very quickly, whereas proembryo cultures of anise (+2,4-D) metabolized [3H]GA1 slowly. The major metabolites of [3H]GA1 in anise were tentatively identified as GA8-glucoside (24%), GA8 (15%), GA1-glucoside (8%) and the 1(10)GA1-counterpart (2%). Thus, high levels of a GA1-like substance and a reduced ability to metabolize GA1 are correlated with the absence of embryo development, while lowered levels of GA1-like substance and a rapid metabolism of GA1 into GA8 and GA-conjugates are correlated with continued embryo development. Exogenous application of GA3 is known to reduce somatic embryogenesis in carrot cultures; GA4 was found to have the same effect in anise cultures. Thus, a role (albeit negative) in somatic embryogenesis for a polar, biologically active GA is implied.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA gibberellin(s) or gibberellin-like substances - GC-RC gas chromatography-radiochromatogram counting - HPLC high-presare liquid chromatography - Rt retention time - TLC thinlaver chromatography  相似文献   

14.
The fate of [14C] gibberellin A3 and [3H] gibberellin A1 was examined in senescing fruit of Shamouti orange (Citrus sinensis L. Osbeck) and tomato (Lycopersicon esculentum Mill.). Gibberellin A3 was highly persistent in Citrus peel (t 1/2=18 days) and to a lesser degree in tomato (t 1/2=5.5 days). Ethylene and ethephon caused a slight enhancement of gibberellin A3 metabolism in Citrus and tomato fruit, respectively. Gibberellin A1 was metabolized by Citrus peel at a relatively high rate (t 1/2 < 24 h) and ethylene slightly reduced this rate. It is concluded that the ethylene-induced enhancement of senescence does not involve major effects on the deactivation of applied gibberellins.Abbreviations GA3 gibberellin A3 - GA1 gibberellin A1  相似文献   

15.
Sesquiterpenoid lactones (SLs) from lettuce (Lactuca sativa L.) include constitutive components of latex such as lactucin and the induced phytoalexin, lettucenin A. A redundant primer strategy was used to recover two full length cDNA clones (LTC1 and LTC2) encoding sesquiterpene synthases from a cDNA library derived from seedlings with the red spot disorder, which accumulate phytoalexins. Recombinant enzymes produced from LTC1 and LTC2 in Escherichia coli catalysed the cyclisation of farnesyl diphosphate to germacrene A, potentially an early step in the biosynthesis of SLs. RT-PCR analysis showed LTC1 and LTC2 were expressed constitutively in roots, hypocotyls and true leaves but not in cotyledons. Expression in cotyledons was induced by challenge with the downy mildew pathogen Bremia lactucae in the disease resistant cultivar Diana. Southern hybridisation experiments showed that LTC1 and LTC2 were not part of a multigene family. The germacrene A synthases provide targets for modified expression to generate beneficial modifications to the SL profile in lettuce.  相似文献   

16.
The mutated melon ethylene receptor gene Cm-ERS1/H70A was introduced into tobacco and induced stable sterility in transgenic lines. This gene contains a missense mutation that converts the His(70) residue to Ala in the melon ethylene receptor gene Cm-ERS1. To test the applicability of this inducible sterility system to other plants, lettuce (Lactuca sativa) was transformed with the gene using Agrobacterium, and putative transformants containing Cm-ERS1/H70A were obtained. Thirteen randomly selected putative transformants were grown in a growth room under constant conditions, and seven of the lines showed sterility or significantly reduced fertility. DNA gel blot analysis confirmed the integration of the Cm-ERS1/H70A gene into the genomes of the putative transformants, and RT-PCR and protein gel blot analysis confirmed the expression of Cm-ERS1/H70A mRNA and protein in all of the transformants. Five transformants showing sterility or reduced fertility when grown in a growth room under constant conditions were randomly selected to be grown in an open-air greenhouse under various environmental conditions. All five showed stable sterility under the various conditions. These results suggest that Cm-ERS1/H70A can induce sterility in heterologous transgenic plants.  相似文献   

17.
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DES dethyltilbestrol  相似文献   

18.
The metabolism of GA29 in maturing seeds of Pisum sativum cv. Progress No. 9 was further investigated, and the utility of 2H-labelled GAs in conjuction with GC-MS is illustrated. Using [2-2H1]GA29 as an internal standard, endogenous GA29 was shown to reach a maximal level (ca. 10 g/seed) 27 days from anthesis, and to decline to ca. 1.6 g/seed in mature seeds. In a time-course feed the metabolism of [2-2H1] [2-3H1]GA29 applied to 27 day old seeds, and of endogenous GA29, was compared from the 1H:2H ratios in the recovered GA29. Although both [2-2H1] [2-3H1]GA29 and endogenous GA29 were metabolised to the same limited extent to a putative conjugate, in the main metabolic process endogenous GA29 was preferentially converted to an untraceable (i.e. unlabelled) metabolite. In contrast, endogenous GA29 and [1,3-2H2] [1,3-3H2]GA29, derived from [1,3-2H2] [1,3-3H2]GA20 in a time-course feed, were metabolised in an identical manner. In the latter case isotope loss precluded identification of the metabolite. The structure (8) has been assigned to a GA catabolite present in maturing seeds and seedlings of pea. The isotope data are consistent with this compound being the hitherto untraced metabolite of GA29 in pea.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - M+ molecular ion - Me methyl ester - RT retention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethylsilyl ether  相似文献   

19.
The timing of mobilisation of lipid, sucrose, raffinose and phytate in lettuce seeds (achenes) (cv. Grand Rapids) has been examined. These reserves (33%, 1.5%, 0.7%, 1.4% of achene dry weight, respectively) are stored mostly in the cotyledons. Except for a slight degradation of raffinose and increase in sucrose, there is no detectable reserve mobilisation during germination. The endosperm (8% of seed dry weight), which has thick, mannan-containing cell walls (carbohydrate, 3,4% of seed dry weight), is completely degraded within about 15h following germination. Mannanase activity increases about 100-fold during the same period and arises in all regions of the endosperm. Also during this period sucrose and raffinose are degraded and fructose and glucose accumulate in the embryo. The endosperm hydrolysis products are taken up by the embryo, and are probably used as an additional reserve to support early seedling growth. However, endosperm cell-wall carbohydrates, such as mannose, are not found as free sugars. Lipid and phytate are degraded in a later, second phase of mobilisation. Low levels of sucrose are present in the embryo, mostly in the cotyledons, and large amounts of fractose and glucose (14% of seedling dry weight at 3 days after sowing) accumulate in the hypocotyl and radicle. It is suggested that sucrose, produced in the cotyledons by gluco-neogenesis, is translocated to the axis and converted there to fructose and glucose.  相似文献   

20.
The levels of endogenous gibberellin A1 (GA1), GA3, GA4, GA9 and a cellulase-hydrolysable GA9-conjugate in needles and shoot stems of Sitka spruce [Picea sitchensis (Bong.) Carr.] grafts with different coning or flowering histories were estimated by combined gas chromatography-mass spectrometry selected ion monitoring using deuterated GA3, GA4 and GA9 as internal standards. The samples were taken at the approximate time of the start of flower-bud differentiation, i.e. when the shoots had elongated approx. 95% of the final length. The needles of the good-flowering clones contained 11–12 ng per g fresh weight (FW) and 15–28 ng· (g FW) –1 of GA9-conjugate and GA9, respectively. The shoot stems of the same material contained no detectable amounts of GA9-conjugate and 11–15 ng-(g FW)–1 of GA9. The amounts of GA9-conjugate and GA9 were apparently lower in the poor-flowering clones, the needles containing 4–9 ng-(g FW)–1 and 7–17 ng·(g FW)–1, respectively. Also in this material the shoot stems contained no detectable amounts of GA9-conjugate. The amounts of GA4 were very small in both materials, ranging from 1–1.6 ng-(g FW)–1. The good-flowering clones contained no detectable amounts of the more polar gibberellins, GA1 and GA3. The poor-flowering clones, on the other hand, contained high levels of GA15 17–19ng·(gFW)–1 in the needles and 10–13 ng·(g FW) –1 in the shoot stems, and also smaller amounts of GA3, 2–3 ng·(g FW)–1 in the needles and approx. 1 ng·(g FW)–1 in the shoot stems. The results demonstrate differences in GA-metabolism between the poor- and the good-flowering clones. The higher amounts of GA9-conjugate and GA9 might indicate a higher capacity for synthesizing GA4 in the good-flowering material. This synthesis does not, however, result in a build-up of the GA4-pool, maybe because of a high rate of turnover. Gibberellin A4 was apparently neither hydroxylated to GA1 nor converted to GA3 in the goodflowering material, as was the case in the poor-flowering material. This might indicate that gibberellin metabolism in the poor-flowering material is directed towards GA1 and GA3, GAs preferentially used in vegetative growth.Abbreviations FW fresh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号