首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

2.
We developed a multiplexed two-dimensional separation system based on reversed phase (RP)--strong cation exchange (SCX) chromatography as a front-end device for matrix-assisted laser desorption ionization (MALDI) or nanoelectrospray ionization (nanoESI) mass spectrometry. Tryptic peptide mixtures were fractionated on a reversed-phase HPLC column, and each fraction was loaded onto multiplexed SCX microcolumns. Because this second chromatography was carried out in parallel, the analysis time is independent of the fraction number in the first RP-HPLC separation. The resultant samples were desalted/concentrated and eluted onto a MALDI plate with matrix-containing elution solutions in parallel, or eluted with optimized solutions for nanoESI and loaded onto nanoESI sprayers by an automated instrument. The soluble portion of HCT116 lysate was digested and fractionated using a 48-plexed chromatography system. Approximately 1000 unique peaks were detected in MALDI-MS with 3000 MS/MS spectra, while 724 peptides with ultrahigh peptide mass accuracy (sub-ppm error) were identified in nanoESI-FTICR mass spectrometry with five integrated selected ion monitoring scans. Since MS measurement with this off-line LC-LC approach is not restricted by continuous LC elution, it is expected to be useful especially in cases where repeated analysis with different scan modes or long-term data acquisition is required.  相似文献   

3.
Proteome complexity necessitates protein or peptide separation prior to analysis. We previously described a pipet-tip based peptide micropurification system named StageTips (STop and Go Extraction Tips), which consists of a very small disk of membrane-embedded separation material. Here, we extend this approach in several dimensions by stacking disks containing reversed phase (C(18)) and strong cation exchange (SCX) materials. Multidimensional fractionation as well as desalting, filtration, and concentration prior to mass spectrometry in single or tandem columns is described. C(18)-SCX-C(18) stacked disks significantly improved protein identification by LC-MS/MS for an E. coli protein digest and by MALDI-MS for a 12 standard protein digest. Sequential fractionation based on C(18)- followed by SCX material was also developed. This multidimensional fractionation approach was expanded to parallel sample preparation by incorporating C(18)-SCX-StageTips into a 96-well plate (StagePlate). Fractions were collected into other C(18)-StagePlates and desalted and eluted in parallel to sample well plates or MALDI targets. This approach is suitable for high throughput protein identification for moderately complex, low abundance samples using automated nanoelectrospray-MS/MS or MALDI-MS.  相似文献   

4.
An on-plate specific enrichment method is presented for the direct analysis of peptides phosphorylation. An array of sintered TiO 2 nanoparticle spots was prepared on a stainless steel plate to provide porous substrate with a very large specific surface and durable functions. These spots were used to selectively capture phosphorylated peptides from peptide mixtures, and the immobilized phosphopeptides could then be analyzed directly by MALDI MS after washing away the nonphosphorylated peptides. beta-Casein and protein mixtures were employed as model samples to investigate the selection efficiency. In this strategy, the steps of phosphopeptide capture, purification, and subsequent mass spectrometry analysis are all successfully accomplished on a single target plate, which greatly reduces sample loss and simplifies analytical procedures. The low detection limit, small sample size, and rapid selective entrapment show that this on-plate strategy is promising for online enrichment of phosphopeptides, which is essential for the analysis of minute amount of samples in high-throughput proteome research.  相似文献   

5.
A microfabricated proteomic sample preparation and sample presentation device, Integrated Selective Enrichment Target, (ISET), comprising an array of 96 perforated nanovials is described. Each perforated nanovial can be filled with solid-phase extraction media for purification and concentration of peptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The validity of the ISET sample preparation is shown by analysis of low nM-pM standard samples, as well as biological samples. The ISET solid-phase extraction sample preparation was compared to ZipTip and MassPREP PROtarget sample preparation, demonstrating a superior performance with respect to number of detected peptides and signal intensity of detected peptides.  相似文献   

6.
Amadori peptides were enriched using boronate affinity tips and measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). As demonstrated by electrochemical measurements, the tips show the highest binding efficiency for glucose at pH 8.2 employing ammonium chloride/ammonia buffer with ionic strength of 150 mM, exceeding taurine buffer at the same concentration. The bound constituents were released by sorbitol and formic acid. It was also demonstrated that elution with sorbitol at 1.2 M is superior to acidic media. Comparison of results was based on the numbers of detected peptides and their glycated sites. Using sorbitol for elution requires desalting prior to analysis. Therefore, three different sorbents were tested: fullerene-derivatized silica, ZipTip (C18), and C18 silica. Fullerene-derivatized silica and ZipTip showed the same performance regarding the numbers of glycated peptides, and sites were better than C18 silica. The elaborated off-line method was compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements, by which considerable less modified peptides were detected. Affinity tips used under optimized conditions were tested for the analysis of human serum albumin (HSA) from sera of healthy and diabetic individuals. A peptide with a mass of 1783.9 Da could be detected only in samples of diabetic patients and, therefore, could be a very interesting biomarker candidate.  相似文献   

7.
Phosphorylated and nonphosphorylated forms of peptide substrates for protein kinase C (PKC) and calcium-calmodulin activated kinase II (CamKII) were separated by capillary zone electrophoresis. Electrophoresis of the peptide substrates and products in biologic buffer solutions in uncoated capillaries yielded asymmetric analyte peaks with substantial peak tailing. Some of the peptides also exhibited broad peaks with unstable migration times. To improve the electrophoretic separation of the peptides, several strategies were implemented: extensive washing of the capillary with a base, adding betaine to the electrophoretic buffer, and coating the capillaries with polydimethylacrylamide (PDMA). Prolonged rinsing of the capillaries with a base substantially improved the migration time reproducibility and decreased peak tailing. Addition of betaine to the electrophoretic buffer enhanced both the migration time stability as well as the theoretical plate numbers of the peaks. Finally PDMA-coated capillaries brought about significant improvements in the resolving power of the separations. These modifications all utilized an electrophoretic buffer that was compatible with a living biologic cell. Consequently they should be adaptable for the new capillary electrophoresis-based methods to measure kinase activation in single cells.  相似文献   

8.
On-target affinity capture, enrichment and purification of biomolecules improve detection of specific analytes from complex biological samples in matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis. In this paper, we report a simple method for preparation of a self-assembled nitrilotriacetic acid (NTA) monolayer on gold surface which can be used as a MALDI-TOF-MS sample target specifically for recombinant oligohistidine-tagged proteins/peptides and phosphorylated peptides. The NTA functional groups are immobilized to the gold surface via the linkage of 1,8-octanedithiol which forms a self-assembled monolayer on gold. Characterization by X-ray photoelectron spectroscopy and MALDI analysis of the modified surface are described. The chemically modified surface shows strong affinity toward the analytes of interest, which allows effective removal of the common interferences, e.g. salts and detergents, and therefore leads to improved signal/noise ratio and detection limit. The use of the modified surface simplifies the sample preparation for MALDI analysis of these targeted analytes.  相似文献   

9.
Commercially available desalting techniques, necessary for downstream MALDI-TOF analysis of proteins, are often costly or time consuming for large-scale analysis. Here, we present techniques to elute proteins from various affinity resins, free from salt and ready for MALDI mass spectrometry. We showed that 0.1% TFA in 50% acetonitrile or 40% ethanol can be used as salt-free eluents for His-tagged proteins from variety of polyhistidine-affinity resins, while washing of resin beads twice with double-distilled water prior to the elution effectively desalted and recovered wide-range-molecular size proteins than commercially available desalting devices. Modified desalting and elution techniques were also applied for Flag- and Myc-tag affinity resins. The technique was further applied in co-precipitation assay, where the maximum recovery of wide-range molecular size proteins is crucial. Further, results showed that simple washing of the beads with double distilled water followed by elution with acetonitrile effectively desalted and recovered 150 kDa factor H protein of the sheep and its binding partner ~30 kDa BbCRASP-1 in co-precipitation assay. In summary, simple modifications in the desalting and elution strategy save time, labor and cost of the protein preparation for MALDI mass spectrometry; and large-scale protein purifications or co-precipitations can be performed with ease.  相似文献   

10.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

11.
An integrated analytical approach for the enrichment, detection, and sequencing of phosphopeptides using matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry (MS) was developed. On the basis of C18-functionalized Fe3O4 nanoparticles, the enrichment method was designed not only to specifically trap phosphopeptides, but also nonphosphorylated peptides, both of which can be subsequently desorbed selectively and directly for MALDI-MS analysis without an elution step. Peptide binding is afforded by the C18-derivatization, whereas the highly selective capture of phosphopeptides is based on higher binding affinity afforded by additional metal chelating interaction between the Fe3O4 nanoparticles and the phosphate groups. Upon binding, the initial aqueous wash allows desalting, while a second and a third wash with high acetonitrile content coupled with diluted sulfuric acid and ammonia removes most of the bound nonphosphorylated peptides. Selective or sequential mapping of the peptides and phosphopeptides can, thus, be effected by spotting the washed nanoparticles onto the MALDI target plate along with judicious choice of matrices. The inclusion of phosphoric acid in a 2,5-dihydroxybenzoic acid matrix allows the desorption and detection of phosphopeptides, whereas an alpha-cyano-4-hydroxy-cinnamic acid matrix with formic acid allows only the desorption of nonphosphorylated peptides. The method used to enrich phosphopeptides prior to MS applications is more sensitive and tolerable to sodium dodecyl sulfate than IMAC. We have demonstrated the applicability of C18-functionalized Fe3O4 nanoparticles in the detection of in vitro phosphorylation sites on the myelin basic protein, and at least 17 phosphopeptides were identified, including one previously uncharacterized site.  相似文献   

12.
Many biologically relevant glycoproteins need to be separated on 1D‐ or 2D‐gels prior to analysis and are available in picomole amounts. Therefore, it is important to have optimized methods to unravel the glycome that combine in‐gel digestions with MALDI‐TOF‐MS. In this technical report, we investigated how the detection of in‐gel released N‐glycans could be improved by MALDI‐TOF‐MS. First, an AnchorChip target was tested and compared to ground steel target using several reference oligosaccharides. The highest signals were obtained with an AnchorChip target and D‐arabinosazone as the matrix; a LOD of 1.3 to 10 fmol was attained. Then, the effect of octyl‐β‐glucopyranoside, a nonionic detergent, was studied during in‐gel peptide‐N4‐(acetyl‐ß‐glucosaminyl) asparagine amidase F digestion of standard glycoproteins and during glycan extraction. Octyl‐β‐glucopyranoside increased the intensity and the amount of detected neutral as well as acidic N‐glycans. A LOD of under 7 pmol glycoprotein could be achieved.  相似文献   

13.
The beneficial use of NC in MALDI‐MS has previously been reported to provide better S/N and reproducibility as well as less alkali metal adducts. We have therefore investigated if additional beneficial properties of NC also existed for commonly employed proteomics‐based LC‐MALDI procedures. Specifically we studied the effects of NC as a matrix cofactor for prestructured sample supports (AnchorChip plates), and compared the performance with several alternative sample preparation methods recently reported in the literature. The work reported here describes a new method of mixing the NC‐matrix solution with the LC‐eluent prior to sample deposition and shows that a mixture of CHCA and NC in a complex solvent offers superior analytical results in several ways: most striking is the higher signal intensity, and that the signals last much longer, due to the robustness of the matrix formulation. We have tested the use of the nitromatrix on a single LC‐MALDI preparation and found that at least ten reiterative analyses could be performed, resulting in total analysis times of more than 75 h (approximately 15 million laser shots). Consequently more than twice as many proteins could be identified than from a single analysis. This combination of longer, and stronger, MALDI signals provided an increase in the number of peptides, greater sequence coverage in MS/MS experiments and ultimately more confident peptide assignments.  相似文献   

14.
The advantage of using proteins and peptides as biomarkers is that they can be found readily in blood, urine, and other biological fluids. Such sample types are easily obtained and represent a potentially rich palette of biologically informative molecules. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) represents a key tool for rapidly interrogating such sample types. The goal of clinical proteomics is to harness the power of this tool for identifying novel, condition-specific protein fingerprints that may, in turn, lead to the elucidation and use of diseasespecific biomarkers that may be used to diagnose disease as well as to evaluate disease severity, disease progression, and intervention efficacy. Here we have evaluated a simple, affordable bench-top MALDI-TOF mass spectrometer to generate protein profiles from human plasma samples of asthma patients and healthy individuals. We achieve this profiling by using C8-functionalized magnetic beads that enrich a specific subset of plasma proteins based on their absorption by this resin. This step is followed by elution, transfer onto a prestructured sample support (AnchorChip technology), and analysis in a bench-top MALDI-TOF mass spectrometer (OmniFLEX) with AutoXecute acquisition control which enables automated operation with reproducible results. Resulting spectra are compiled and analyzed through the pattern recognition component of ClinProTools software. This approach in combination with ClinProTools software permits the investigator to rapidly scan for potential biomarker peptides/proteins in human plasma. The reproducibility of plasma profiles within and between days has been evaluated. The results show that the novel and facile approach with manual magnetic-bead sample preparation and a low-cost bench-top MALDI-TOF mass spectrometer is suitable for preliminary biomarker discovery studies.  相似文献   

15.
Previous studies in our group have shown that the analyte signal in a matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) experiment is strongly influenced by the binding interactions between the target surface and the analyte. Specifically, the analyte signal increases with decreases in surface binding affinity, which has been attributed to more unbound analyte being available for incorporation within the MALDI matrix. In this work, polyethylene glycol (PEG) was chemically grafted onto a polyurethane (PU) film to produce a MALDI target having reduced surface-protein binding affinity, and the effect of this modification on protein MALDI ion signals was investigated. The proteins myoglobin, lysozyme, and albumin were used to evaluate the PEG PU modified target as compared with a PU target and a commercial stainless steel target. It is shown that there are enhancements in the protein MALDI ion signals on the PEG PU modified target and that the limit of detection for these proteins is decreased by a factor of 2 to 6 in comparison with the unmodified PU and the commercial stainless steel targets.  相似文献   

16.
The success attributed to identification and characterization of gel separated proteins by mass spectrometry (MS) is highly dependent on the percentage of an entire sequence covered by matching peptides derived from enzymatic digestion. Desalting and concentration of peptide mixtures on reversed-phase (RP) microcolumns prior to mass spectrometric analysis have resulted in increased signal-to-noise ratio and sensitivity, and consequently higher sequence coverage. A large proportion of peptides, however, remains undetected by MS presumably because they are lost during sample preparation on microcolumns, or are suppressed in the ionization process. We report here the use of graphite powder packed in constricted GELoader tips as an alternative to RP microcolumns for desalting and concentration of peptide mixtures prior to MS. Such columns are able to retain small and/or hydrophilic peptides that can be lost when using RP microcolumns. In addition, we show that samples contaminated with small biological polymers can readily be analyzed using graphite powder rather than RP microcolumns, since the polymer molecules bind strongly to graphite and are not eluted with the peptides.  相似文献   

17.
18.
We applied the improved sensitivity and soft ionization characteristics of electrospray Ionization (ESI)-MS/MS and matrix-assisted laser desorption/ionization(MALDI)-time of flight (TOF) mass spectrometry (MS) to analysis of the GPI-anchored C-terminal peptide derived from 5'-nucleotidase. ESI-MS/MS analysis was applied to the core structure (MW, 2,743). In the collision-induced dissociation (CID) spectrum, single-charged ions such as m/z 162 (glucosamine), 286 (mannose-phosphate-ethanolamine), and 447 ([mannose-phosphate-ethanolamine]-glucosamine) were clearly detected as characteristic fragment ions of the GPI-anchored peptide. On MALDI-TOF-MS analysis, heterogeneous peaks of GPI-anchored peptides were detected as single-charged ions in the positive mode. Product ions were obtained by post-source decay (PSD) of m/z 2,905 using curved field reflectron of TOF-MS. Most of the expected product ions derived from the GPI-anchored peptide, containing the core structure and an additional mannose side chain, were successively obtained. Thus, ESI-MS/MS and MALDI-TOF-PSD-MS proved to be effective and sensitive methods for analyzing the GPI-anchored peptide structure with less than 10 pmol of sample. These characteristic fragments or fragmentation patterns seem to be very useful for identification of GPI-anchored C-terminal peptides derived from any kind of GPI-anchored protein.  相似文献   

19.
Time-of-flight MALDI mass spectrometry (MALDI-TOF-MS) profiling of blood serum of patients with Guillain-Barré syndrome (GBS, 36 samples), chronic inflammatory demyelinating polyneuropathy (CIDP, 24 samples) and practically healthy donors (HD) (35 samples) was carried out in order to identify potential biomarkers of autoimmune demyelinating polyneuropathies (ADP). To simplify the peptide-protein mixture of serum prior to MALDI-TOF-MS analysis samples were pre-fractionated on magnetic microparticles with a weak cation-exchange (MB-WCX) surface. Comparative analysis of mass spectrometric data using the classification algorithms (genetic and neural network-controlled) revealed a characteristic set of peaks, agreed change area with a high specificity and sensitivity of the differentiated mass spectrometry profiles of the blood serum of patients with DPNP and healthy donors (for GBS values of these characteristics reached 100 and 100, and for CIDP 94.1 and 100% respectively). Comparative analysis of mass spectrometric profiles of serum samples obtained from patients with GBS and CIDP, allowed to build a classification model to differentiate these diseases from each other, with a specificity of 88.9 and a sensitivity of 80%.  相似文献   

20.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has become a fundamental tool for the identification and analysis of peptides and proteins. MALDI-TOF is well suited for the analysis of complex biological mixtures because samples are crystallized onto a solid support that can be washed to remove contaminants and salts prior to laser desorption. A number of approaches for immobilizing samples onto MALDI targets have been put forth. These include the use of different chemical matrices and the immobilization of samples onto different solid supports. In large part though, the preparation of MALDI targets has been an empirical exercise that often requires a unique series of conditions for every sample. Here, a simple method for the application of peptide mixtures onto MALDI targets is put forth. This method differs because peptides are added directly to a sample of nitrocellulose dissolved in acetone, allowing them to interact in solution-phase organic solvent. This solution-phase mixture is then spotted to the MALDI target and evaporated, forming a homogenous solid surface for laser desorption. This procedure is robust, highly sensitive, tolerant to detergents, and easily learned. In our hands, the method provides as much as a 10-fold enhancement to the detection of tryptic peptide fragments derived from in-gel digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号