首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of excess free radical causes cellular oxidative stress, which has been shown to be associated with a variety of pathologic conditions. While electron spin resonance (ESR) spectroscopy has been the only method to demonstrate the presence of free radicals, its application to tissue samples has been challenging. We report here the successful ESR detection in thin-sliced fresh tissues or frozen sections in a rat model. Ferric nitrilotriacetate (Fe-NTA) induces oxidative renal tubular damage that ultimately leads to high incidence of renal carcinoma in rodents. Twenty minutes after administration of 5 mg iron/kg Fe-NTA to rats, a thin-slice of the kidney was mounted on a tissue-type cell and analyzed by ESR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). An ESR signal from alkylperoxyl radical adduct was obtained, and the signal was inversely proportional to renal alpha-tocopherol content which was modulated through diet. Furthermore, we undertook ex vivo study using frozen sections. Fe-NTA (1 mM) was added to a rat kidney frozen section for 10 min. After washing the specimen was mounted on a tissue-type cell and analyzed with ESR spin trapping using DMPO. Alkylperoxyl radical signal was dependent on thickness, incubation time and renal tissue levels of alpha-tocopherol, and was reduced by preincubation with catalase or dimethyl sulfoxide but not with alpha-tocopherol outside tissue. This versatile method facilitates identification of free radicals in pathologic conditions, and may be useful for selection of antioxidants.  相似文献   

2.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

3.
Abstract: To examine the role played by free radicals in brain injury, we performed experiments to detect radicals in the frontal cortex of rats, using electron spin resonance (ESR) and microdialysis. A dialysis probe was inserted into the frontal cortex, and spin adducts in perfusates were immediately detected by ESR. We obtained a relatively stable doublet signal, with parameters of g = 2.0057 and aH = 0.17 mT. This signal corresponded with that of the ascorbyl radical. Ascorbyl radical in the perfusate collected from the frontal cortex was augmented by microinjection of H2O2 and FeCl2 adjacent to the dialysis probe. When the rats were challenged with cold-induced brain injury, ascorbyl radical and lactate dehydrogenase (LDH) level in the perfusate increased significantly. Pretreatment with superoxide dismutase and catalase attenuated the increase in ascorbyl radical and LDH level induced by the cold injury. Infusion of FeCl2 dissolved in perfusate caused a pronounced increase in ascorbyl radical and LDH level after the cold injury. We conclude that the direct detection of free radical formation further supports the hypothesis that free radicals play an important role in traumatic brain injury. Our findings also indicate that combined microdialysis with ESR spectroscopy is a useful in vivo method for monitoring free radical production in the brain.  相似文献   

4.
When diaziquone was irradiated with 500 nm visible light, hydroxyl free radicals as well as the diaziquone semiquinone were produced. The diaziquone semiquinone is a stable free radical that exhibits a characteristic 5-line electron spin resonance (ESR) spectrum. Since hydroxyl free radicals are short lived, and not observable by conventional ESR, the nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was used to convert hydroxyl radicals into longer lived ESR detectable spin adducts. The formation of hydroxyl radicals was further confirmed by investigating reactions in which hydroxyl radical scavangers, sodium formate and dimethylsulfoxide, compete with the spin traps DMPO or POBN (alpha-(4-Pyridyl-1-oxide)-N- tert-butylnitrone) for hydroxyl free radicals. The products of these scavenging reactions were also trapped with DMPO or POBN. If drug free radicals and hydroxyl free radicals are important in the activity of quinone-containing antitumor agents, AZQ may have a potential in photoirradiation therapy or photodynamic therapy.  相似文献   

5.
The detection of protein free radicals using the specific free radical reactivity of nitrone spin traps in conjunction with nitrone-antibody sensitivity and specificity greatly expands the utility of the spin trapping technique, which is no longer dependent on the quantum mechanical electron spin resonance (ESR). The specificity of the reactions of nitrone spin traps with free radicals has already made spin trapping with ESR detection the most universal, specific tool for the detection of free radicals in biological systems. Now the development of an immunoassay for the nitrone adducts of protein radicals brings the power of immunological techniques to bear on free radical biology. Polyclonal antibodies have now been developed that bind to protein adducts of the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In initial studies, anti-DMPO was used to detect DMPO protein adducts produced on myoglobin and hemoglobin resulting from self-peroxidation by H2O2. These investigations demonstrated that myoglobin forms the predominant detectable protein radical in rat heart supernatant, and hemoglobin radicals form inside red blood cells. In time, all of the immunological techniques based on antibody-nitrone binding should become available for free radical detection in a wide variety of biological systems.  相似文献   

6.
Redox-reactions are playing a significant role in regulation of homeostasis of organism. Disorder of the redox-status is related with the onset and/or propagation of oxidative diseases such as lifestyle-related diseases, including cancers and cardiac diseases, etc. In vivo imaging of redox-status is thereby important in the analysis of mechanisms of oxidative diseases and developments of new medicines for the diseases. Aminoxyl radicals are redox-sensitive reporter molecules, which lose their paramagnetic moiety by reactions of free radicals or reducing compounds. Electron spin resonance (ESR) technique has been used to measure the molecules in vivo. In vivo spatial resolution in ESR imaging is in the range of a few millimeters and is not sufficient for the detailed diagnosis of disease models. Overhauser enhanced MRI (OMRI) is an emerging free radical imaging technique, which utilised electron-proton coupling to image the distribution of free radicals. In vivo imaging of redox-status is applicable with OMRI/aminoxyl radical technique. The detailed imaging analysis was demonstrated in oxidative diseases, such as tumour-bearing, neurodegeneration or gastric ulcer models. The OMRI/aminoxyl radical technique has a large potential as a diagnostic system for biomedical applications in the future.  相似文献   

7.
Aflatoxin B1 (AFB1) is a potent hepatocarcinogen. We have recently detected [via electron spin resonance (ESR) spectroscopy] free radicals in vivo in rat bile following AFB1 metabolism using the spin trapping [alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN)] technique. The aim of the present study was to identify the trapped free radical intermediates from the in vivo hepatic metabolism of AFB1. Rats were treated simultaneously with AFB1 (3 mg/kg i.p.) and the spin trapping agent 4-POBN (1 g/kg i.p.), and bile was collected over a period of 1 h at 20 min intervals. On-line high performance liquid chromatography (HPLC) coupled to ESR was used to identify an arachidonic acid-derived radical adduct of 4-POBN in rat bile, and a methyl adduct of 4-POBN from the reaction of hydroxyl radicals with carbon-13-labeled dimethyl sulfoxide ((13)C-DMSO). The effect of metabolic inhibitors, such as desferoxamine mesylate (DFO), an iron chelator, 2-dimethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF) 525A, a cytochrome P-450 inhibitor, and gadolinium chloride (GdCl(3)), a Kupffer cell inactivator, on in vivo aflatoxin-induced free radical formation were also studied. It was found that there was a significant decrease in radical formation as a result of DFO, SKF525A and GdCl(3) inhibition. Trapped 4-POBN radical adducts were also detected in rat bile following the in vivo metabolism of aflatoxin-M1, one of the hydroxylated metabolites of AFB1.  相似文献   

8.
The ultimate goal of in vivo electron spin resonance (ESR) spin trapping is to provide a window to the characterization and quantification of free radicals with time within living organisms. However, the practical application of in vivo ESR to systems involving reactive oxygen radicals has proven challenging. Some of these limitations relate to instrument sensitivity and particularly to the relative stability of these radicals and their nitrone adducts, as well as toxicity limitations with dosing. Our aim here is to review the strengths and weaknesses of both traditional and in vivo ESR spin trapping and to describe new approaches that couple the strengths of spin trapping with methodologies that promise to overcome some of the problems, in particular that of radical adduct decomposition. The new, complementary techniques include: (i) NMR spin trapping, which monitors new NMR lines resulting from diamagnetic products of radical spin adduct degradation and reduction, (ii) detection of *NO by ESR with dithiocarbamate: Fe(II) "spin trap-like" complexes, (iii) MRI spin trapping, which images the dithiocarbamate: Fe(II)-NO complexes by proton relaxation contrast enhancement, and (iv) the use of ESR to follow the reactions of sulfhydryl groups with dithiol biradical spin labels to form "thiol spin label adducts," for monitoring intracellular redox states of glutathione and other thiols. Although some of these approaches are in their infancy, they show promise of adding to the arsenal of techniques to measure and possibly "image" oxidative stress in living organisms in real time.  相似文献   

9.
Oxidative lipid metabolism as a result of acute cyanobacterial toxin-induced hepatotoxicity was monitored in male Sprague-Dawley rats using electron spin resonance (ESR) spectroscopy and image-guided proton nuclear magnetic resonance (1H-NMR) spectroscopy. ESR spectroscopy, coupled with spin trapping, was used to trap and detect lipid-derived radicals, formed in rat livers after acute in vivo exposure (LD50) to the cyanobacterial toxin, microcystin-LR (MCLR). A statistically significant increase in the levels (spectral peak integrals) of lipid radicals was detected in MCLR-treated livers (p < 0.05) (n = 8), in comparison to control livers (n = 6). In order to monitor lipid metabolism, before and for a period of 3 h, following toxin exposure, in vivo proton image-guided NMR spectroscopy was used. A statistically significant decrease in the levels of lipid methylene hydrogen resonances (spectral peak integrals) was observed from MCLR-treated livers (n = 6) 2 and 3 h post-exposure (p < 0.05), in comparison to controls (n = 6). Image-guided NMR spectroscopy was also used to detect significant decreasing levels of in vivo glutamine/glutamate, following exposure to MCLR. Biochemical assessment of perchloric extracts of liver glutamine and glutamate levels correlated with NMR spectroscopy results. Lactate levels measured as perchloric acid extracts, were also found to significantly decrease. In addition, assessment of serum enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were used to confirm hepatotoxicity (n = 20). This study strongly suggests that oxidative stress related processes are involved in in vivo microcystin-induced hepatotoxicity in mammals, and may play an integral role in MCLR-induced toxicity.  相似文献   

10.
The generation of free radicals in rat liver following the acute oral administration of ethanol was studied with the spin-trapping method, using a deuterated derivative of phenyl-N-tert-butylnitrone (PBN-d14) as the spin-trapping agent. After administration of ethanol and PBN-d14 to rats, organic extracts of the liver were prepared and subjected to ESR spectroscopy. In the case of ethanol-treated rats, the ESR spectra indicated that mixtures of radicals had been trapped, while spectra from control rats were essentially negative. The predominant spin adduct detected after ethanol treatment is proposed to be from a carbon-centered, primary alkyl radical, based on gamma-hydrogen hyperfine splitting patterns observed with PBN-d14. Oxygen-centered radicals also contributed to the ESR spectra. Liver extracts also contained low concentrations of the 1-hydroxyethyl radical spin adduct, which was indicated by weak spectral lines corresponding to those of the 1-13C-ethanol adduct. These data confirm previous suggestions that ethanol is metabolized to a free radical metabolite in rat liver. In addition, some information on types of lipid radicals generated during alcohol intoxication has been obtained.  相似文献   

11.
Summary

Detection of hydroxyl free radicals is frequently performed by electron spin resonance (ESR) following spin trapping of the radical using 5,5-dimethylpyrroline N-oxide (DMPO) to generate a stable free radical having a characteristic ESR spectrum. The necessary ESR equipment is expensive and not readily available to many laboratories. In the present study, a specific and sensitive gas chromatography—mass spectrometry (GC/MS) method for detection of hydroxyl and hydroxyethyl free radicals is described. The DMPO or N-t-butyl—α—phenylnitrone (PBN) radical adducts are extracted and derivatized by trimethylsylilation and analyzed by GC/MS. To standardize the method, .OH and 1-hydroxyethyl radicals were generated in two different systems: 1) a Fenton reaction in a pure chemical system in the absence or presence of ethanol and 2) in liver microsomal suspensions where ethanol is metabolized in the presence of NADPH. In the Fenton system both radicals were easily detected and specifically identified using DMPO or PBN. In microsomal suspensions DMPO proved better for detection of .OH radicals and PBN more suitable for detection of 1-hydroxyethyl radicals. The procedure is specific, sensitive and potentially as useful as ESR.  相似文献   

12.
The passive permeation rates of DMPO and DEPMPO spin traps and their hydroxyl radical adducts through liposomal membranes were measured using ESR spectroscopy. For the spin traps, we measured the time-dependent change in the signal intensity of the OH-adduct, which is formed by a reaction between the penetrated spin trap and hydroxyl radicals produced by the UV-radiolysis of H(2)O(2) inside the liposomes. The hydroxyl radicals produced outside the liposomes were quenched with polyethylene glycol. For the OH-adduct, pre-formed adduct was mixed with liposomes and the time-dependent change of the ESR signal was measured in the presence of a line-broadening reagent outside the liposomes to make the signal outside the liposomes invisible. Both the spin traps and their OH-adducts diffused across the lipid membranes rapidly and reached equilibrium within tens of seconds. These findings suggest that if used for the detection of free radicals inside cells, these spin traps should be well distributed in cells and even in organelles.  相似文献   

13.
Spin Trapping Using 2,2-Dimethyl-2H-Imidazole-1-Oxides   总被引:1,自引:0,他引:1  
The ability of novel cyclic nitrones, 4-substituted 2,2-dimethyl-2H-imidazole-1-oxides (IMO's) to trap a variety of short-lived free radicals has been investigated using ESR spectroscopy. IMO's scavenge oxygen-, carbon- and sulfur-derived free radicals to give persistent nitroxides. Compared to the spin trap 5,5-dimethyl-pyrroline-1-oxide, a higher lifetime of hydroxyl radical adducts and a higher selectivity related to the trapping of carbon-centered radicals was found. A reaction between IMO's and superoxide was not observed. ESR parameters of 4-carboxyl-2,2-dimethyl-2H-imidazole-1-oxide (CIMO) spin adducts are highly sensitive to the structure of the trapped radical, e.g., different spectra were detected with radicals derived from Na2SO3 and NaHSO3. From the data obtained, a successful application of these new spin traps in biological systems can be expected.  相似文献   

14.
The decomposition of organic hydroperoxides as catalyzed by chloroperoxidase was investigated with electron spin resonance (ESR) spectroscopy. Tertiary peroxyl radicals were directly detected by ESR from incubations of tert-butyl hydroperoxide or cumene hydroperoxide with chloroperoxidase at pH 6.4. Peroxyl, alkoxyl, and carbon-centered free radicals from tertiary hydroperoxide/chloroperoxidase systems were successfully trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide, whereas alkoxyl radicals were not detected in the ethyl hydroperoxide/chloroperoxidase system. The carbon-centered free radicals were further characterized by spin-trapping studies with tert-nitrosobutane. Oxygen evolution measured by a Clark oxygen electrode was detected for all the hydroperoxide/chloroperoxidase systems. The classical peroxidase mechanism is proposed to describe the formation of peroxyl radicals. In the case of tertiary peroxyl radicals, their subsequent self-reactions result in the formation of alkoxyl free radicals and molecular oxygen. beta-Scission and internal hydrogen atom transfer reactions of the alkoxyl free radicals lead to the formation of various carbon-centered free radicals. In the case of the primary ethyl peroxyl radicals, decay through the Russell pathway forms molecular oxygen.  相似文献   

15.
Reactive free radicals and reactive oxygen species (ROS) induced by ultraviolet irradiation in human skin are strongly involved in the occurrence of skin damages like aging and cancer. In the present work an ex vivo method for the detection of free radicals/ROS in human skin biopsies during UV irradiation is presented. This method is based on the Electron Spin Resonance (ESR) spectroscopy and imaging and uses the radical trapping properties of nitroxides. The nitroxides 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 3-Carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCM), and 3-Carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCA), were investigated for their applicability of trapping reactive free radicals and reactive oxygen species in skin during UV irradiation. As a result of the trapping process the nitroxides were reduced to the EPR silent hydroxylamins. The reduction rate of TEMPO was due to both the UV radiation and the enzymatic activity of the skin. The nitroxides PCM and PCA are sufficiently stable in the skin and are solely reduced by UV-generated free radicals/ROS. The nitroxide PCA was used for imaging the spatial distribution of UV-generated free radicals/ROS. As a result of the homogeneous distribution of PCA in the skin, it was possible to estimate the penetration of UVA and UVB irradiation: The UV irradiation decreased the PCA intensity corresponding to its irradiance and penetration into the skin. This reduction was shown to be caused mainly by UVA radiation (320-400 nm).  相似文献   

16.
A number of researchers have reported that free radicals generated in the brain are involved in various brain dysfunctions, including ischemia-reperfusion injury, brain tumors, and neurodegenerative diseases. It has been reported that the spin probe MC-PROXYL can penetrate the blood-brain barrier and can be useful for evaluating oxidative stress in the brain. Preliminary comparisons were made by ESR imaging of the heads of live mice and isolated rat brains using the spin probe MC-PROXYL and the blood-brain-barrier impermeable probe carbamoyl-PROXYL. The results showed that MC-PROXYL, but not carbamoyl-PROXYL, was widely distributed in the brain. These methods were also applied for the imaging of brains from stroke-prone spontaneously hypertensive rats (SHRSPs). The rapid decay of 2D ESR images of MC-PROXYL in isolated SHRSP-brain was observed, compared to Wistar-Kyoto rats (WKYs), using the ESR imaging system. Furthermore, we provide evidence, by using L-band ESR non-invasively, that the decay rate of MC-PROXYL in the head region is faster in live SHRSPs than in live WKYs. Taken together, the high oxidative stress sustained by oxygen radical generation in SHRSPs may cause the alteration of MC-PROXYL metabolism in the brain. Our results suggest that in vivo ESR could be applied to the assessment of antioxidant effects on oxidative stress in the brain in animal disease models, such as the SHRSP.  相似文献   

17.
Nitrone/nitroso spin traps are often used for detection of unstable hydroxyl radical giving stable nitroxide radicals with characteristic electron spin resonance (ESR) signals. This technique may be useful only when the nitroxide radicals are kept stable in the reaction system. The aim of the present study is to clarify whether the nitroxide radicals are kept stable in the presence of the hydroxyl radical scavengers. Effect of hydroxyl radical scavengers on the ESR signals of nitroxide radicals, 2,2,6,6-tetramethyI-piperi-dine-N-oxyl (TEMPO) and the spin adduct (DMPO-OH) of 5,5-dimethyl-l-pyrroline N-oxide (DMPO) and hydroxyl radical, was examined. Although the ESR signals of TEMPO and the DMPO-OH spin adduct were unchanged on treatment with ethanol and dimethyl sulfoxide, their intensities were effectively decreased on treatment with 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox), cysteine, glutathione, 2-mercaptoethanol and metallothionein. Hence, the results of the detection of hydroxyl radical in the presence of phenolic and thiol antioxidants by the ESR technique using nitrone/nitroso spin traps may be unreliable.  相似文献   

18.

Background

Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, spectroscopy) is widely considered to be the “gold standard” for the detection and characterisation of radicals in biological systems.

Scope of review

The article reviews the major positive and negative aspects of EPR spectroscopy and discusses how this technique and associated methodologies can be used to maximise useful information, and minimise artefacts, when used in biological studies. Consideration is given to the direct detection of radicals (at both ambient and low temperature), the use of spin trapping and spin scavenging (e.g. reaction with hydroxylamines), the detection of nitric oxide and the detection and quantification of some transition metal ions (particularly iron and copper) and their environment.

Major conclusions

When used with care this technique can provide a wealth of valuable information on the presence of radicals and some transition metal ions in biological systems. It can provide definitive information on the identity of the species present and also information on their concentration, structure, mobility and interactions. It is however a technique that has major limitations and the user needs to understand the various pitfalls and shortcoming of the method to avoid making errors.

General significance

EPR remains the most definitive method of identifying radicals in complex systems and is also a valuable method of examining radical kinetics, concentrations and structure. This article is part of a Special Issue entitled Current methods to study reactive oxygen species — pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

19.
Electrochemical studies on actinomycin D (1) and two analogs, 2-amino-3-phenoxazone (2) and 1,2,4-trichloro-7-nitrophenoxazone (3) were analyzed by polarography and ESR spectroscopy. The polarograms of the three compounds in acetonitrile all show two reduction waves. ESR experiments confirm that the first reduction wave corresponds to a one-electron transfer process which produces a phenoxazone free radical anion and the second wave corresponds to a subsequent one-electron transfer producing a diamagnetic dianion. Substitution with electron-withdrawing groups such as NO2 (at C-7) and chloro (at C-1, C-2 and C-4)3 facilitated the reduction of the phenoxazone ring system to a free radical (i.e., half-wave potentials; 1, -0.815 V; 2, -0.920 V; 3, -0.135 V). It was found, by computer simulation of the ESR spectra, that the spin density in the electrochemically generated free radicals from 1, 2 and 3 was preferentially located in the benzenoid ring and at the N-10 nitrogen. For radicals obtained from 1 and 2, only a small residual spin density could be detected in the quinoid ring. Since 1 can be metabolized to a free radical in cells, these free radical forms of 1 and its analogs may represent reactive forms of the phenoxazone nucleus.  相似文献   

20.
Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号