首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute hypertension inhibits proximal tubule (PT) fluid reabsorption. The resultant increase in end proximal flow rate provides the error signal to mediate tubuloglomerular feedback autoregulation of renal blood flow and glomerular filtration rate and suppresses renal renin secretion. To test whether the suppression of the renin-angiotensin system during acute hypertension affects the magnitude of the inhibition of PT fluid and sodium reabsorption, plasma ANG II levels were clamped by infusion of the angiotensin-converting enzyme (ACE) inhibitor captopril (12 microg/min) and ANG II after pretreatment with the bradykinin B(2) receptor blocker HOE-140 (100 microg/kg bolus). Because ACE also degrades bradykinin, HOE-140 was included to block effect of accumulating vasodilatory bradykinins during captopril infusion. HOE-140 increased the sensitivity of arterial blood pressure to ANG II: after captopril infusion without HOE-140, 20 ng x kg(-1) x min(-1) ANG II had no pressor effect, whereas with HOE-140, 20 ng x kg(-1) x min(-1) ANG II increased blood pressure from 104 +/- 4 to 140 +/- 6 mmHg. ANG II infused at 2 ng x kg(-1) x min(-1) had no pressor effect after captopril and HOE-140 infusion ("ANG II clamp"). When blood pressure was acutely increased 50-60 mmHg by arterial constriction without ANG II clamp, urine output and endogenous lithium clearance increased 4.0- and 6.7-fold, respectively. With ANG II clamp, the effects of acute hypertension were reduced 50%: urine output and endogenous lithium clearance increased two- and threefold, respectively. We conclude that HOE-140, an inhibitor of the B(2) receptor, potentiates the sensitivity of arterial pressure to ANG II and that clamping systemic ANG II levels during acute hypertension blunts the magnitude of the pressure diuretic response.  相似文献   

2.
Using a radioimmunoassay for [Arg8]vasopressin(1-8) (des-glycinamide9-[Arg8]vasopressin; DGAVP) endogenous immunoreactive DGAVP (IR-DGAVP) was detected in extracts of plasma prepared from trunk blood of male Wistar rats. The IR-DGAVP was further characterized by reversed-phase high pressure liquid chromatography (HPLC). One of the two immunoreactive peaks obtained by HPLC coeluted with synthetic DGAVP and did not cross-react in a radioimmunoassay specific for [Arg8]vasopressin(1-9) (AVP). The other showed the chromatographical and radioimmunological characteristics of AVP. Analysis by HPLC of plasma prepared from fresh blood spiked with 3H-AVP indicated that under the experimental conditions employed no DGAVP was formed during extraction. The results indicate that DGAVP is present in rat plasma, possibly as an endogenous metabolite of AVP.  相似文献   

3.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

4.
Hemodynamic (blood pressure and heart rate) experiments were conducted in conscious and/or anesthetized male Sprague-Dawley (S.D.), heterozygous and homozygous Brattleboro rats given intravenous (iv) dynorphin A(1-13), arginine vasopressin (AVP), norepinephrine (HCl, (NE) or sterile saline before and 10 min after an iv bolus injection of a specific receptor antagonist. These receptor blockers (kappa receptor antagonist Mr2266, alpha adrenoceptor antagonist phentolamine HCl or the AVP-V1 receptor antagonist d(CH2)5Tyr-(Me)AVP were given in equimolar concentrations (15 nmol/kg iv). In all conscious S.D. groups, iv injection of AVP (60 pmol/kg), NE (12.5 nmol/kg) and dynorphin A(1-13) (60 nmol/kg) evoked significant increases in mean arterial pressure (MAP) associated with concomitant bradycardia. The hemodynamic responses to 'both' AVP and dynorphin A(1-13) were blocked if given subsequent to AVP-V1 administration but not following phentolamine or Mr2266 pretreatment. The pressor and bradycardic responses of conscious heterozygous and homozygous Brattleboro rats after iv AVP or dynorphin again were only blocked by the AVP-V1 receptor antagonist. Anesthetized heterozygous and homozygous Brattleboro rats again showed pressor responses following iv AVP, NE or dynorphin A(1-13) but with slight or no associated bradycardia. The rise in blood pressure with AVP 'and' dynorphin A(1-13) in these groups also was only blocked by the d(CH2)5Tyr(Me)AVP antagonist. The results indicate that the pressor responses of rats given intravenous dynorphin A(1-13) involve the interaction of AVP-V1 receptors and suggest a functional interaction of these two neuropeptides in the modulation of vascular tone.  相似文献   

5.
After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml x kg(-1) x min(-1)) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 microg/min but not 20 or 2.0 microg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 +/- 3.2 vs. 13.9 +/- 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 microg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 +/- 1.5 vs. 13.9 +/- 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 microg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated mu-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.  相似文献   

6.
It has been reported that systemic injection of arginine vasopressin (AVP) induces a drop in body core temperature (T(c)), but little is known about the mechanisms involved. Because glutamate is an important excitatory neurotransmitter involved in a number of thermoregulatory actions, in the present study, we tested the hypothesis that glutamate plays a role in systemic AVP-induced hypothermia. Wistar rats were pretreated intracerebroventricularly (icv) with kynurenic acid, an antagonist of l-glutamate ionotropic receptors, alpha-methyl-(4-carboxyphenyl)glycine (MCPG), an antagonist of l-glutamate metabotropic receptors, or saline 15 min before intravenous injection of AVP (2 microg/kg) or saline. T(c), brown adipose tissue (BAT) temperature, blood pressure, heart rate, and tail skin temperature were measured continuously. Administration of saline icv followed by intravenous AVP caused a significant drop in T(c) brought about by a reduction in BAT thermogenesis and an increase in heat loss through the tail. MCPG treatment (icv) did not affect the fall in T(c) induced by AVP. Treatment with kynurenic acid (icv) abolished AVP-induced hypothermia but did not affect the AVP-evoked rise in blood pressure or drop in heart rate and BAT temperature. Heat loss through the tail was significantly reduced in animals injected with AVP and pretrated with kynurenic acid. These data indicate that ionotropic receptors of l-glutamate in the central nervous system participate in peripheral AVP-induced hypothermia by affecting heat loss through the tail.  相似文献   

7.
8.
Behavioral and physiological effects of arginine vasopressin (AVP) were examined following intracerebroventricular (ICV) injection in the rat. ICV injections prolonged extinction of active avoidance at doses of 1.0 and 10.0 ng/rat and this effect was blocked by peripheral injection of the vasopressor antagonist of vasopressin [dPtyr(Me)AVP] at a dose of 30 micrograms/kg (SC). However, 1.0 ng of AVP ICV failed to alter systemic blood pressure and also failed to produce taste aversions in a one or two bottle test. Results suggest that central AVP has a central action independent of systemic changes in blood pressure, but that the receptor mediating this action is functionally similar to the AVP V1 (vasopressor) receptor.  相似文献   

9.
We recently demonstrated that fluid is filtered out of the splenic circulation and into the lymphatic system. The current experiments were designed to investigate the importance of this route of fluid extravasation in endotoxemia. Lipopolysaccharide (LPS) was infused into conscious intact and splenectomized rats (150 microg x kg(-1). h(-1) i.v. for 18 h). In the intact rats, mean arterial pressure (MAP) fell from 101+/-2.4 to 88+/-3.9 mm Hg (n = 7) and then stabilized at about 90 mm Hg. Hematocrit rose from 41+/-0.9 to 45+/-0.4% at 40 min, at which time plasma volume had fallen from 4.7+/-0.12 to 4.0+/-0.05 ml/100 g body wt. In the splenectomized rats MAP did not fall and hematocrit did not rise. There also was no change in plasma volume, i.e., splenectomy prevented the hypotension and hemoconcentration customarily induced by LPS. In a second series of experiments, splenic arterial and venous blood flows were simultaneously measured in anesthetized rats infused with LPS (150 microg x kg(-1) x h(-1)). LPS increased splenic fluid efflux. We conclude that during endotoxemia the initial fall in circulating blood volume may be attributed to fluid extravasation from the splenic vasculature.  相似文献   

10.
Previous work in rats (Ader, R. and De Wied, D., Psychon. Sci., 29 (1972) 46-48) has established that subcutaneously (s.c.) injected arginine vasopressin (AVP) prolongs extinction of active avoidance and that this effect could be prevented by pretreatment with the vasopressin antagonist analog [1-deaminopenicillamine, 2-(O-methyl)tyrosine]-beta-arginine vasopressin (dPtyr(Me)AVP). The purpose of the present study was to determine if peripherally administered AVP acts via a peripheral blood pressure effect or by a direct action in the central nervous system. We therefore tested the effects of the antagonist injected intracerebroventricularly (i.c.v.) on the prolongation of active avoidance and on blood pressure effects of s.c. injected AVP. The antagonist (i.c.v.) blocked the behavioral effects of systemically injected AVP only at dose sufficient to block the peripherally mediated pressor response of systemically administered AVP. The results show that peripherally injected AVP acts on peripheral systems and support our hypothesis that the peripheral visceral action of AVP contributed significantly to its behavioral action.  相似文献   

11.
Acutely increasing peripheral angiotensin II (ANG II) reduces the maximum renal sympathetic nerve activity (RSNA) observed at low mean arterial blood pressures (MAPs). We postulated that this observation could be explained by the action of ANG II to acutely increase arterial blood pressure or increase circulating arginine vasopressin (AVP). Sustained increases in MAP and increases in circulating AVP have previously been shown to attenuate maximum RSNA at low MAP. In conscious rabbits pretreated with an AVP V1 receptor antagonist, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng x kg(-1) x min(-1)) on the relationship between MAP and RSNA when the acute pressor action of ANG II was left unopposed with that when the acute pressor action of ANG II was opposed by a simultaneous infusion of sodium nitroprusside (SNP). Intravenous infusion of ANG II resulted in a dose-related attenuation of the maximum RSNA observed at low MAP. When the acute pressor action of ANG II was prevented by SNP, maximum RSNA at low MAP was attenuated, similar to that observed when ANG II acutely increased MAP. In contrast, intravertebral infusion of ANG II attenuated maximum RSNA at low MAP significantly more than when administered intravenously. The results of this study suggest that ANG II may act within the central nervous system to acutely attenuate the maximum RSNA observed at low MAP.  相似文献   

12.
Spontaneuosly hypertensive rats (SHR) have been shown to exhibit several alterations in function of the intrabrain vasopressinergic system. The present study was designed to find out whether centrally administered vasopressin (AVP) may influence the cardiovascular adaptation to hypotensive hypovolemia in SHR rats. Two series of experiments were performed on conscious 17 SHR rats chronically implanted with lateral cerebral ventricle (LCV) cannulas and with femoral artery catheters. Mean arterial pressure (MAP) and heart rate (HR) were monitored before and after arterial bleeding (1,3% body weight) performed during LCV infusion of 1) artificial cerebrospinal fluid 5 microl/hour (aCSF); and 2) arginine vasopressin, 100 ng/hour/5 microl of aCSF (AVP). Central administration of aCSF and AVP had no effect on MAP and HR under resting conditions. Hemorrhage evoked significant hypotension (p<0.001) and bradycardia (p<0.001). During central infusion of AVP hemorrhage resulted in significantly greater hypotension than during central infusion of aCSF alone (p<0,05). The results provide evidence that centrally applied vasopressin significantly modulates cardivascular adjustments to hypotensive hemorrhage in SHR.  相似文献   

13.
Preterm infants are often treated with intravenous dopamine to increase mean arterial blood pressure (MAP). However, there are few data regarding cerebrovascular responses of developing animals to dopamine infusions. We studied eight near-term and eight preterm chronically catheterized unanesthetized fetal sheep. We measured cerebral blood flow and calculated cerebral vascular resistance (CVR) at baseline and during dopamine infusion at 2.5, 7.5, 25, and 75 microg x kg(-1) x min(-1). In preterm fetuses, MAP increased only at 75 microg x kg(-1) x min(-1) (25 +/- 5%), whereas in near-term fetuses MAP increased at 25 microg x kg(-1) x min(-1) (28 +/- 4%) and further at 75 microg x kg(-1) x min(-1) (51 +/- 3%). Dopamine infusion was associated with cerebral vasoconstriction in both groups. At 25 microg x kg(-1) x min(-1), CVR increased 77 +/- 51% in preterm fetuses and 41 +/- 11% in near-term fetuses, and at 75 microg x kg(-1) x min(-1), CVR increased 80 +/- 33% in preterm fetuses and 83 +/- 21% in near-term fetuses. We tested these responses to dopamine in 11 additional near-term fetuses under alpha-adrenergic blockade (phenoxybenzamine, n = 5) and under dopaminergic D(1)-receptor blockade (SCH-23390, n = 6). Phenoxybenzamine completely blocked dopamine's pressor and cerebral vasoconstrictive effects, while D(1)-receptor blockade had no effect. Therefore, in unanesthetized developing fetuses, dopamine infusion is associated with cerebral vasoconstriction, which is likely an autoregulatory, alpha-adrenergic response to an increase in blood pressure.  相似文献   

14.
Pressor responses and heart rate responses to intravenous injections (3.5-50.0 pmol/kg) of arginine vasopressin (AVP) were recorded in saline- and clonidine-treated spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. Clonidine (20 micrograms/kg, i.v.) caused a marked fall of arterial pressure in SHR but not in WKY rats so that, 20 min after the injection of the alpha 2-adrenoceptor agonist, arterial pressure was similar in the two strains of rats. The curve expressing the relationship between the dose of AVP and the increase of arterial pressure for saline-treated SHR was positioned to the left of that for saline-treated WKY rats. This enhanced pressor responsiveness of SHR to AVP may have been related to impaired reflex activity since heart rate fell much less in SHR than in WKY rats for a given elevation in pressure. Pressure responses to AVP were augmented by clonidine in both SHR and WKY rats so that, similar to saline-treated rats, pressor responsiveness to the peptide was still greater in SHR. Heart rate responses to AVP were not altered significantly by clonidine. The results indicate that clonidine fails to enhance reflex activity and reduce pressor responsiveness of SHR to AVP. The increased pressor responsiveness of both SHR and WKY rats to AVP following clonidine was an unexpected finding and may be related to a peripheral interaction between alpha-adrenergic agonists and AVP.  相似文献   

15.
Vasopressin and blood pressure regulation   总被引:2,自引:0,他引:2  
The vasoconstrictor actions of arginine vasopressin (AVP) have been shown to occur in concentrations much lower than previously thought. Pressor responses to AVP are a poor index of vasoconstrictor activity since, in contrast to other vasoconstrictor agents, the expected rise of pressure is offset by dose-dependent decreases of cardiac output. The mechanisms for this appear to be, in large part, modulation of the autonomic nervous system whereby AVP enhances vagal nerve activity and reduces peripheral sympathetic nerve activity. AVP enhancement of baroreceptor reflex gain is in part responsible for these changes in some species (dog and rabbit), but not in others (rat). The release of AVP appears to contribute significantly to the normalization of arterial pressure in volume-depleted and hypotensive states. The link between plasma AVP and hypertension remains unclear, but it appears likely that it has an important permissive action in the development of sodium-dependent forms of hypertension.  相似文献   

16.
Saia RS  Carnio EC 《Life sciences》2006,79(15):1473-1478
We have tested the hypothesis that nitric oxide (NO) arising from inducible nitric oxide synthase (iNOS) plays a role in hypothermia during endotoxemia by regulating vasopressin (AVP) release. Wild-type (WT) and iNOS knockout mice (KO) were intraperitoneally injected with either saline or Escherichia coli lipopolysaccharide (LPS) 10.0 mg/kg in a final volume of 0.02 mL. Body temperature was measured continuously by biotelemetry during 24 h after injection. Three hours after LPS administration, we observed a significant drop in body temperature (hypothermic response) in WT mice, which remained until the seventh hour, returning then close to the basal level. In iNOS KO mice, we found a significant fall in body temperature after the fourth hour of LPS administration; however, the hypothermic response persisted until the end of the 24 h of the experiment. The pre-treatment with beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1), O-Et-Tyr2, Val4, Arg8-Vasopressin, an AVP V1 receptor antagonist (10 microg/kg) administered intraperitoneally, abolished the persistent hypothermia induced by LPS in iNOS KO mice, suggesting the regulation of iNOS under the vasopressin release in this experimental model. In conclusion, our data suggest that the iNOS isoform plays a role in LPS-induced hypothermia, apparently through the regulation of AVP release.  相似文献   

17.
We hypothesized that performanceof exercise during heart failure (HF) would lead to hypoperfusion ofactive skeletal muscles, causing sympathoactivation at lower workloadsand alteration of the normal hemodynamic and hormonal responses. Wemeasured cardiac output, mean aortic and right atrial pressures,hindlimb and renal blood flow (RBF), arterial plasma norepinephrine(NE), plasma renin activity (PRA), and plasma arginine vasopressin(AVP) in seven dogs during graded treadmill exercises and at rest. Incontrol experiments, sympathetic activation at the higher workloadsresulted in increased cardiac performance that matched the increasedmuscle vascular conductance. There were also increases in NE, PRA, and AVP. Renal vascular conductance decreased during exercise, such thatRBF remained at resting levels. After control experiments, HF wasinduced by rapid ventricular pacing, and the exercise protocols wererepeated. At rest in HF, cardiac performance was significantly depressed and caused lower mean arterial pressure, despite increased HR. Neurohumoral activation was evidenced by renal and hindlimb vasoconstriction and by elevated NE, PRA, and AVP levels, but it didnot increase at the mildest workload. Beyond mild exercise, sympathoactivation increased, accompanied by progressive renal vasoconstriction, a fall in RBF, and very large increases of NE, PRA,and AVP. As exercise intensity increased, peripheral vasoconstriction increased, causing arterial pressure to rise to near normal levels, despite depressed cardiac output. However, combined with redirection ofRBF, this did not correct the perfusion deficit to the hindlimbs. Weconclude that, in dogs with HF, the elevated sympathetic activity observed at rest is not exacerbated by mild exercise. However, withheavier workloads, sympathoactivation begins at lower workloads andbecomes progressively exaggerated at higher workloads, thus alteringdistribution of blood flow.

  相似文献   

18.
The aim of the study was to find out whether vasopressin (AVP) modifies hypotensive and heart rate accelerating effects of atrial natriuretic peptide (ANP) in normotensive (WKY) and spontaneously hypertensive (SHR) conscious rats. The effect of i.v. administration of 1; 2 and 4 micrograms of ANP on blood pressure (MP) and heart rate (HR) was compared during i.v. infusion of 0.9% NaCl (NaCl), NaCl+AVP (1.2 ng kg-1 min-1) and NaCl+dEt2AVP (V1 receptors antagonist, 0.5 microgram kg-1 min-1). AVP increased MP in SHR and WKY and decreased HR in SHR. V1 antagonist decreased MP and increased HR only in SHR. In SHR ANP decreased MP and increased HR during NaCl, AVP and V1 antagonist infusion. In WKY these effects were observed only during AVP administration. In each experimental situation hypotension and tachycardia induced by ANP were greater in SHR than in WKY. In both strains ANP induced changes in MP and HR were enhanced during AVP in comparison to NaCl infusion. V1 antagonist did not modify effects of ANP in WKY and SHR. The results indicate that ANP abolishes hypertensive response induced by blood AVP elevation and that the basal levels of endogenous vasopressin acting through V1 receptors does not interfere with hypotensive action of ANP neither in WKY nor in SHR.  相似文献   

19.
The role of arginine vasopressin (AVP) in blood pressure regulation in humans and animals is still controversial. The present study was designed to investigate the effects of AVP on blood pressure and the excretion of sodium and prostaglandin (PG) E2 in rabbits. AVP dissolved in 0.01 M acetic acid was infused subcutaneously at a rate of 0.86 ng/kg/min with a miniosmotic pump into 12 New Zealand white rabbits (2.7-3.4 kg), while 10 controls were given vehicle alone. AVP infusion resulted in a 3.5-fold rise in the level of plasma AVP (21.8 +/- 4.4 (SEM) pg/ml) as compared with controls, associated with a significant decrease in the urine volume and urinary excretion of sodium. The PGE2 excretion was increased 1.8-fold after AVP infusion. In the chronic AVP-infused group, blood pressure was not significantly increased, but the acute vascular response to AVP was significantly attenuated without any changes in the vasopressor response to angiotensin II. Preadministration of V1-antagonist completely abolished the vasopressor action of AVP, but not that of angiotensin II, in either group. These results suggest that circulating AVP within physiological range of concentrations may stimulate renal PGE2 synthesis and attenuate the vascular response through vascular V1 receptors without affecting the baroreflex, which may be attenuated through V2 receptors.  相似文献   

20.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. Controls: after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号