首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.  相似文献   

2.
3.
Calcium (Ca2+) is an ubiquitous intracellular signal that is responsible for a plethora of cellular processes including fertilization, secretion, contraction, neuronal signaling and learning. In addition, changes in intracellular Ca2+ have been known to influence cell proliferation and differentiation for more than three decades. Recent studies have indicated that members of the transient receptor potential (TRP) family of ion channels which respond to many different modes of stimulation both from within and outside the cell may be a primary mode of cation and Ca2+ entry into cells and may have roles in growth control. Moreover, changes in the expression of these channels may contribute to certain cancers. In the following, recent results concerning the expression and function of members of this family of ion channels are summarized.  相似文献   

4.
Nomenclature of voltage-gated sodium channels   总被引:52,自引:0,他引:52  
  相似文献   

5.
We study how functional constraints bound and shape evolution through an analysis of mammalian voltage-gated sodium channels. The primary function of sodium channels is to allow the propagation of action potentials. Since Hodgkin and Huxley, mathematical models have suggested that sodium channel properties need to be tightly constrained for an action potential to propagate. There are nine mammalian genes encoding voltage-gated sodium channels, many of which are more than approximately 90% identical by sequence. This sequence similarity presumably corresponds to similarity of function, consistent with the idea that these properties must be tightly constrained. However, the multiplicity of genes encoding sodium channels raises the question: why are there so many? We demonstrate that the simplest theoretical constraints bounding sodium channel diversity--the requirements of membrane excitability and the uniqueness of the resting potential--act directly on constraining sodium channel properties. We compare the predicted constraints with functional data on mammalian sodium channel properties collected from the literature, including 172 different sets of measurements from 40 publications, wild-type and mutant, under a variety of conditions. The data from all channel types, including mutants, obeys the excitability constraint; on the other hand, channels expressed in muscle tend to obey the constraint of a unique resting potential, while channels expressed in neuronal tissue do not. The excitability properties alone distinguish the nine sodium channels into four different groups that are consistent with phylogenetic analysis. Our calculations suggest interpretations for the functional differences between these groups.  相似文献   

6.
The rising phase of the action potential in excitable cells is mediated by voltage-gated sodium channels (VGSCs), of which there are nine mammalian subtypes with distinct tissue distribution and biophysical properties. The involvement of certain VGSC subtypes in disease states such as pain and epilepsy highlights the need for agents that modulate VGSCs in a subtype-specific manner. Conotoxins from marine snails of the Conus genus constitute a promising source of such modulators, since these peptide toxins have evolved to become selective for various membrane receptors, ion channels and transporters in excitable cells. This review covers the structure and function of three classes of conopeptides that modulate VGSCs: the pore-blocking mu-conotoxins, the delta-conotoxins which delay or inhibit VGSC inactivation, and the muO-conotoxins which inhibit VGSC Na(+) conductance independent of the tetrodotoxin binding site. Some of these toxins have potential therapeutic and research applications, in particular the muO-conotoxins, which may develop into potential drug leads for the treatment of pain states.  相似文献   

7.
Slow inactivation in voltage-gated sodium channels is a biophysical process that governs the availability of sodium channels over extended periods of time. Slow inactivation, therefore, plays an important role in controlling membrane excitability, firing properties, and spike frequency adaptation. Defective slow inactivation is associated with several diseases of cell excitability, such as hyperkalemic periodic paralysis, myotonia, idiopathic ventricular fibrillation and long-QT syndrome. These associations underscore the physiological importance of this phenomenon. Nevertheless, our understanding of the molecular substrates for slow inactivation is still fragmentary. This review covers the current state of knowledge concerning the molecular underpinnings of slow inactivation, and its relationship with other biophysical processes of voltage-gated sodium channels.  相似文献   

8.
9.
10.
L-type calcium channels are present in most electrically excitable cells and are needed for proper brain, muscle, endocrine and sensory function. There is accumulating evidence for their involvement in brain diseases such as Parkinson disease, febrile seizures and neuropsychiatric disorders. Pharmacological inhibition of brain L-type channel isoforms, Cav1.2 and Cav1.3, may therefore be of therapeutic value. Organic calcium channels blockers are clinically used since decades for the treatment of hypertension, cardiac ischemia, and arrhythmias with a well-known and excellent safety profile. This pharmacological benefit is mainly mediated by the inhibition of Cav1.2 channels in the cardiovascular system. Despite their different biophysical properties and physiological functions, both brain channel isoforms are similarly inhibited by existing calcium channel blockers. In this review we will discuss evidence for altered L-type channel activity in human brain pathologies, new therapeutic implications of existing blockers and the rationale and current efforts to develop Cav1.3-selective compounds.  相似文献   

11.
Electrical excitability in cells such as neurons and myocytes depends not only upon the expression of voltage-gated sodium channels but also on their correct targeting within the plasma membrane. Placing sodium channels within a broader cell biological context is beginning to shed new light on a variety of important questions such as the integration of neuronal signaling. Mutations that affect sodium channel trafficking have been shown to underlie several life-threatening conditions including cardiac arrhythmias, revealing an important clinical context to these studies.  相似文献   

12.
Voltage-gated Na(+) channels are heteromeric membrane glycoproteins responsible for the generation of action potentials. A number of diverse lipid-soluble neurotoxins, such as batrachotoxin, veratridine, aconitine, grayanotoxins, pyrethroid insecticides, brevetoxins and ciguatoxin, target voltage-gated Na(+) channels for their primary actions. These toxins promote Na(+) channel opening, induce depolarization of the resting membrane potential, and thus drastically affect the excitability of nerve, muscle and cardiac tissues. Poisoning by these lipid-soluble neurotoxins causes hyperexcitability of excitable tissues, followed by convulsions, paralysis and death in animals. How these lipid-soluble neurotoxins alter Na(+) channel gating mechanistically remains unknown. Recent mapping of receptor sites within the Na(+) channel protein for these neurotoxins using site-directed mutagenesis has provided important clues on this subject. Paradoxically, the receptor site for batrachotoxin and veratridine on the voltage-gated Na(+) channel alpha-subunit appears to be adjacent to or overlap with that for therapeutic drugs such as local anaesthetics (LAs), antidepressants and anticonvulsants. This article reviews the physiological actions of lipid-soluble neurotoxins on voltage-gated Na(+) channels, their receptor sites on the S6 segments of the Na(+) channel alpha-subunit and a possible linkage between their receptors and the gating function of Na(+) channels.  相似文献   

13.
NaChBac, a six-alpha-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na(+)-selective channel. As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of NaChBac, however, is still unknown. In this report, another 11 structurally related bacterial proteins are described. Two of these functionally expressed as voltage-dependent Na(+) channels (Na(V)PZ from Paracoccus zeaxanthinifaciens and Na(V)SP from Silicibacter pomeroyi). Na(V)PZ and Na(V)SP share approximately 40% amino acid sequence identity with NaChBac. When expressed in mammalian cell lines, both Na(V)PZ and Na(V)SP were Na(+)-selective and voltage-dependent. However, their kinetics and voltage dependence differ significantly. These single six-alpha-helical transmembrane-spanning subunits constitute a widely distributed superfamily (Na(V)Bac) of channels in bacteria, implying a fundamental prokaryotic function. The degree of sequence homology (22-54%) is optimal for future comparisons of Na(V)Bac structure and function of similarity and dissimilarity among Na(V)Bac proteins. Thus, the Na(V)Bac superfamily is fertile ground for crystallographic, electrophysiological, and microbiological studies.  相似文献   

14.
Voltage-gated sodium (Nav) channels are indispensable membrane elements for the generation and propagation of electric signals in excitable cells. The successes in the crystallographic studies on prokaryotic Nav channels in recent years greatly promote the mechanistic investigation of these proteins and their eukaryotic counterparts. In this paper, we mainly review the progress in computational studies, especially the simulation studies, on these proteins in the past years.  相似文献   

15.
Various neurotoxic peptides modulate voltage-gated sodium (Na(V)) channels and thereby affect cellular excitability. Delta-conotoxins from predatory cone snails slow down inactivation of Na(V) channels, but their interaction site and mechanism of channel modulation are unknown. Here, we show that delta-conotoxin SVIE from Conus striatus interacts with a conserved hydrophobic triad (YFV) in the domain-4 voltage sensor of Na(V) channels. This site overlaps with that of the scorpion alpha-toxin Lqh-2, but not with the alpha-like toxin Lqh-3 site. Delta-SVIE functionally competes with Lqh-2, but exhibits strong cooperativity with Lqh-3, presumably by synergistically trapping the voltage sensor in its "on" position.  相似文献   

16.
17.
Molecular mechanisms of neurotoxin action on voltage-gated sodium channels   总被引:29,自引:0,他引:29  
Cestèle S  Catterall WA 《Biochimie》2000,82(9-10):883-892
Voltage-gated sodium channels are the molecular targets for a broad range of neurotoxins that act at six or more distinct receptor sites on the channel protein. These toxins fall into three groups. Both hydrophilic low molecular mass toxins and larger polypeptide toxins physically block the pore and prevent sodium conductance. Alkaloid toxins and related lipid-soluble toxins alter voltage-dependent gating of sodium channels via an allosteric mechanism through binding to intramembranous receptor sites. In contrast, polypeptide toxins alter channel gating by voltage sensor trapping through binding to extracellular receptor sites. The results of recent studies that define the receptor sites and mechanisms of action of these diverse toxins are reviewed here.  相似文献   

18.
One of the major physiological roles of the neuronal voltage-gated sodium channel is to generate action potentials at the axon hillock/initial segment and to ensure propagation along myelinated or unmyelinated fibers to nerve terminal. These processes require a precise distribution of sodium channels accumulated at high density in discrete subdomains of the nerve membrane. In neurons, information relevant to ion channel trafficking and compartmentalization into sub-domains of the plasma membrane is far from being elucidated. Besides, whereas information on dendritic targeting is beginning to emerge, less is known about the mechanisms leading to the polarized distribution of proteins in axon. To obtain a better understanding of how neurons selectively target sodium channels to discrete subdomains of the nerve, we addressed the question as to whether any of the large intracellular regions of Nav1.2 contain axonal sorting and/or clustering signals. We first obtained evidence showing that addition of the cytoplasmic carboxy-terminal region of Nav1.2 restricted the distribution of a dendritic-axonal reporter protein to axons of hippocampal neurons. The analysis of mutants revealed that a di-leucine-based motif mediates chimera compartmentalization in axons and its elimination in soma and dendrites by endocytosis. The analysis of the others generated chimeras showed that the determinant conferring sodium channel clustering at the axonal initial segment is contained within the cytoplasmic loop connecting domains II-III of Nav1.2. Expression of a soluble Nav1.2 II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, it is conceivable that concerted action of the two determinants is required for sodium channel compartmentalization in axons.  相似文献   

19.
BACE1 regulates voltage-gated sodium channels and neuronal activity   总被引:1,自引:0,他引:1  
BACE1 activity is significantly increased in the brains of Alzheimer's disease patients, potentially contributing to neurodegeneration. The voltage-gated sodium channel (Na(v)1) beta2-subunit (beta2), a type I membrane protein that covalently binds to Na(v)1 alpha-subunits, is a substrate for BACE1 and gamma-secretase. Here, we find that BACE1-gamma-secretase cleavages release the intracellular domain of beta2, which increases mRNA and protein levels of the pore-forming Na(v)1.1 alpha-subunit in neuroblastoma cells. Similarly, endogenous beta2 processing and Na(v)1.1 protein levels are elevated in brains of BACE1-transgenic mice and Alzheimer's disease patients with high BACE1 levels. However, Na(v)1.1 is retained inside the cells and cell surface expression of the Na(v)1 alpha-subunits and sodium current densities are markedly reduced in both neuroblastoma cells and adult hippocampal neurons from BACE1-transgenic mice. BACE1, by cleaving beta2, thus regulates Na(v)1 alpha-subunit levels and controls cell-surface sodium current densities. BACE1 inhibitors may normalize membrane excitability in Alzheimer's disease patients with elevated BACE1 activity.  相似文献   

20.
The role of voltage-gated sodium channels in neuropathic pain   总被引:7,自引:0,他引:7  
Use-dependent inhibitors of voltage-gated sodium channels (VGSC) are important therapeutic tools for chronic pain management, but are limited by possible severe side effects. Recent studies have provided much new information on the function of several voltage-gated sodium channels that are predominantly expressed in peripheral sensory neurons, and on their possible link to pathological pain states arising from injuries to the sensory nerve. The use of antisense oligonucleotides to target specific channel subtypes shows that the functional localization of the channel subtype Na(V)1.8 after nerve injury is essential for persistent pain states. The putative roles of Na(V)1.3 and Na(V)1.9 in neuropathic pain are also discussed. These studies may form a basis for developing inhibitors to target specific channel subtype(s) for use in chronic pain treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号