首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three genes in the major sperm protein (MSP) gene family from the potato cyst nematode Globodera rostochiensis were cloned and sequenced. In contrast to the absence of introns in Caenorhabditis elegans MSP genes, these genes in G. rostochiensis contained a 57 nucleotide intron, with normal exon-intron boundaries, in the same relative location as the intron in Onchocerca volvulus. The MSP genes of G. rostochiensis had putative CAAT, TATA, and polyadenylation signals. The predicted G. rostochiensis MSP gene product is 126 amino acids long, one residue shorter than the products in the other species. The comparison of MSP amino acid sequences from four diverse nematode species suggests that O. volvulus, Ascaris suum, and C. elegans may be more closely related to each other than they are to G. rostochiensis.  相似文献   

2.
3.
4.
A new cyst nematode species, Globodera ellingtonae, was recently described from populations in Oregon and Idaho. This nematode has been shown to reproduce on potato. Because of this nematode’s close relationship to the potato cyst nematodes, G. rostochiensis and G. pallida, an understanding of the risk of its potential spread, including prediction of potential geographical distribution, is required. To determine the development of G. ellingtonae under different temperatures, we conducted growth chamber experiments over a range of temperatures (10.0°C to 26.5°C) and tracked length of time to various developmental stages, including adult females bearing the next generation of eggs. Both the time to peak population densities of G. ellingtonae life stages and their duration in roots generally increased with decreasing temperature. Regression of growth rate to second-stage (J2) and third-stage (J3) juveniles on temperature yielded different base temperatures: 6.3°C and 4.4°C for J2 and J3, respectively. Setting a base temperature of 6°C allowed calculation of the degree-days (DD6) over which different life stages occurred. The largest population densities of J2 were found in roots between 50 and 200 DD6. Population densities of J3 peaked between 200 and 300 DD6. Adult males were detected in soil starting at 300 to 400 DD6 and remained detectable for approximately 500 DD6. By 784 to 884 DD6, half of the eggs in adult females contained vermiform juveniles. Given the similarity in temperature ranges for successful development between G. ellingtonae and G. rostochiensis, G. ellingtonae populations likely could survive in the same geographic range in which G. rostochiensis now occurs.  相似文献   

5.
Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing significant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-pathogen interactions, however, the molecular knowledge of how ethylene influences potato–nematode interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating the response to potato cyst nematode stress were selected and functionally characterized. Using real-time polymerase chain reaction (RT-PCR), we measured the quantified expression of four pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations could detect and induce defense genes in infected potato roots compared to the control treatment. The observed differences in the gene expression of treated infected plants are because of different concentrations of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense- related genes during developmental stages and pathogen infection. We concluded that ethylene treatments positively affected potato defensive genes expression levels against cyst nematode infection. The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress responses. Understanding such mechanisms will be critical for the development of broad-spectrum and stress-tolerant crops in the future.  相似文献   

6.
7.
Globodera rostochiensis population densities and potato root growth were measured in field plots of one susceptible and two resistant potato cultivars. Root growth and nematode densities were estimated from soil samples taken at three depths between plants within the rows, three depths 22.5 cm from the rows, and at two depths midway between rows (furrows). Four weeks after plant emergence (AE), nematode densities in the rows had declined 68% in plots of the susceptible cultivar and up to 75% in plots of both resistant cultivars. Significant decline in nematode densities in the furrows 4 weeks AE occurred only in plots of the susceptible cultivar. Total decline in nematode density in fallow soil was 50%, whereas in plots of the resistant cultivars, decline was more than 70% in the rows and more than 50% in the furrows. Nematode densities increased in the rows of the susceptible cultivar but declined in the furrows. We conclude that G. rostochiensis decline or increase is correlated with host resistance and the amount of roots present at any particular site.  相似文献   

8.
Control of potato cyst-nematode, Globodera rostochiensis, was examined on potato or tomato in pots and on potato in field plots by various chemicals incorporated into the soil at planting. The most effective nematicides were organophosphorus compounds, generally of the type O,O-diethyl O-phosphoro-thioates or O,O-diethyl phosphorodithioates, carbamates and benzimidazoles. In organic soils, the more lipophilic compounds were less effective, presumably because of sorption onto soil organic matter. Foliar sprays of chemicals, including oxamyl which is known to be translocated to roots, gave poor control of G. rostochiensis. The root-knot nematode, Meloidogyne incognita, on tomato, widely used in screening for nematicidal activity, was controlled by aldicarb or phoxim incorporated into the soil at planting, but not by benomyl or thiabendazole, in contrast to the moderate effectiveness of these latter two chemicals against G. rostochiensis.  相似文献   

9.
10.
Potato cyst nematodes caused by Globodera rostochiensis, are quarantine-restricted pests causing significant yield losses to potato growers. The phytohormone ethylene play significant roles in various plant-pathogen interactions, however, the molecular knowledge of how ethylene influences potato–nematode interaction is still lacking. Precise detection of potato-induced genes is essential for recognizing plant-induced systemic resistance (ISR). Candidate genes or PR- proteins with putative functions in modulating the response to potato cyst nematode stress were selected and functionally characterized. Using real-time polymerase chain reaction (RT-PCR), we measured the quantified expression of four pathogenesis-related (PR) genes, PR2, PR3, peroxidase, and polyphenol oxidase. The activation of these genes is intermediate during the ISR signaling in the root tissues. Using different ethylene concentrations could detect and induce defense genes in infected potato roots compared to the control treatment. The observed differences in the gene expression of treated infected plants are because of different concentrations of ethylene treatment and pathogenicity. Besides, the overexpressed or suppressed of defense- related genes during developmental stages and pathogen infection. We concluded that ethylene treatments positively affected potato defensive genes expression levels against cyst nematode infection. The results emphasize the necessity of studying molecular signaling pathways controlling biotic stress responses. Understanding such mechanisms will be critical for the development of broad-spectrum and stress-tolerant crops in the future.  相似文献   

11.
We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.  相似文献   

12.
Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.

Leaf herbivory counteracts the repression of jasmonate-related defenses triggered by a root knot nematode in tomato roots impairing the nematode performance via shoot-to-root jasmonate signaling  相似文献   

13.
The foliar response to different herbivores sharing the same hosts is an important topic for the study of plant-insect interactions. Plants evolve local and systemic resistant strategies to cope with herbivores. Many researchers have characterized the mechanisms of leaf responses to insect infestation; however, the fact that roots serve as systemic resistance modulators to leaf herbivores has been widely ignored. Here, we report that tomato (Solanum lycopersicum) plants infected with southern root-knot nematodes (Meloidogyne incognita)—which feed on the roots to form nodules—enhanced leaf defenses against aboveground attackers, specifically, the whitefly (Bemisia tabaci). Our results show that nematode infection reduced the whitefly population abundance because of conferring a stronger SA-dependent defense pathway against whitefly than in tomato plants without nematode infection. Meanwhile, nematode-infected tomato plant also activated the foliar JA-dependent defense pathway at 4 h after whitefly infestation. However, the foliar JA-dependent defense under whitefly infestation alone was suppressed, with the JA content being nearly 30 % lower than that in tomato plants co-infected with nematodes and whiteflies. Furthermore, nematode infection significantly decreased the plant nitrogen concentration in leaves and roots. As a result, nematode infection reduced the number of whiteflies by enhancing foliar SA-dependent defense, activating JA-dependent defense and decreasing nitrogen nutrition. Our results suggest that underground nematode infection significantly enhances the defense ability of tomato plants against whitefly.  相似文献   

14.
In 2006, the golden cyst nematode, Globodera rostochiensis, was discovered in the province of Quebec, Canada. We report here the life cycle of G. rostochiensis under the climatic conditions of southwestern Quebec. Only one full generation was completed per year under these latitudes. On susceptible potato cv. Snowden, G. rostochiensis needed a minimum of 579 growing degree units (GDU) (base 5.9°C) to complete its life cycle and the first mature cysts were observed 42 to 63 days after planting (DAP). In soil, second-stage juveniles (J2) were first observed 14 to 21 DAP, whereas both white females on roots and males in soil appeared synchronously after 35 to 42 days. The duration of the life cycle was affected by temperature but not by soil type. A second wave of hatching systematically occurred later in the season and a second generation of males was observed during the 2011 growth season. No complete second cycle was observed before plant senescence. Climate change and later maturing cultivars/crops could allow the development of a full second generation in the future.  相似文献   

15.
The significance of fungal endophytes in African agriculture, particularly Kenya, has not been well investigated. Therefore, the objective of the present work was isolation, multi-gene phylogenetic characterization and biocontrol assessment of endophytic fungi harbored in tomato roots for nematode infection management. A survey was conducted in five different counties along the central and coastal regions of Kenya to determine the culturable endophytic mycobiota. A total of 76 fungal isolates were obtained and characterized into 40 operational taxonomic units based on the analysis of ITS, β-tubulin and tef1α gene sequence data. Among the fungal isolates recovered, the most prevalent species associated with tomato roots were members of the Fusarium oxysporum and F. solani species complexes. Of the three genes utilized for endophyte characterization, tef1α provided the best resolution. A combination of ITS, β-tubulin and tef1α resulted in a better resolution as compared to single gene analysis. Biotests demonstrated the ability of selected non-pathogenic fungal isolates to successfully reduce nematode penetration and subsequent galling as well as reproduction of the root-knot nematode Meloidogyne incognita. Most Trichoderma asperellum and F. oxysporum species complex isolates reduced root-knot nematode egg densities by 35–46 % as compared to the non-fungal control and other isolates. This study provides first insights into the culturable endophytic mycobiota of tomato roots in Kenya and the potential of some isolates for use against the root-knot nematode M. incognita. The data can serve as a framework for fingerprinting potential beneficial endophytic fungal isolates which are optimized for abiotic and biotic environments and are useful in biocontrol strategies against nematode pests in Kenyan tomato cultivars. This information would therefore provide an alternative or complementary crop protection component.  相似文献   

16.
Ornithine decarboxylase and arginine decarboxylase activities were measured in roots and buds of tomato (Lycopersicon esculentum Mill. cv. Pearson ms-35) and potato (Solanum tuberosum cv. Desire) plants. In both tomato and potato, the activity of ornithine decarboxylase was the highest at the root tip, decreasing proximally. The same was true for potato buds. In vegetative buds of tomato, the highest activity was found in the youngest leaves. The older the leaf, the lower was orithine decarboxylase activity. Arginine decarboxylase, on the other hand, did not display a similar gradient. These findings are in accordance with the suggestion that in tomato and potato elevated ornithine decarboxylase activity is associated with intense mitotic activity.  相似文献   

17.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Soaking potato tuber pieces for 15 min in 8,000 μg/ml of oxamyl just before planting reduced the number of Globodera rostochiensis cysts that developed on potato roots, but this treatment was phytotoxic. Five foliar applications of 1.12 kg a.i./ha of oxamyl or carbofuran at 10-day intervals beginning when 90% of the plants had emerged suppressed increase in G. rostochiensis densities. Similar foliar applications of phenamiphos were ineffective in controlling G. rostochiensis. Soil applications (in the row at planting) of aldicarb, carbofuran, phenamiphos, ethoprop, and oxamyl at 5.6 kg a.i./ha reduced the numbers of white females that developed on potato roots, but only those treatments involving aldicarb and oxamyl suppressed G. rostochiensis population increase. Combined soil and foliar treatments did not provide any advantage over soil treatment alone, as soil applications of 5.6 kg a.i./ha alone were equal to, or better than, combined soil (3.4 kg a.i./ha) and foliar (2.2 kg a.i./ha) applications in controlling G. rostochiensis.  相似文献   

19.
The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development,1 nematode secreted effectors are becoming recognized as suppressors of plant immunity.2-4 Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction.3 To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.  相似文献   

20.
The hatching responses of Globodera rostochiensis (golden potato cyst nematode) to purified and partially-purified preparations of natural (including the potato glycoalkaloids solanine and α-chaconine) and artificial hatching factors (HFs) were bimodal. At least 10 HFs, mostly anionic, were resolved from potato root leachate by a combination of gel permeation and ion-exchange chromatography. Whereas potato roots were the principal source of HFs, haulm leachate also contained such chemicals. Root leachate from aseptically-grown potato plants lacked several HFs which were present in conventionally-produced leachate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号