首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size, distribution, and content of catalase-reactive microperoxisomes were studied cytochemically in slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG) fibers of soleus and extensor digitorum longus (EDL) rat muscles. Fiber types were classified on the basis of mitochondrial content and distribution, Z-band widths, and myofibril size and shape. Microperoxisomes were generally located between myofibrils at the I-bands. The absence of crystalloid inclusions prevented positive identification of microperoxisomes in nonreacted and aminotriazole-inhibited muscles. EDL and soleus SO fibers possessed the largest microperoxisomes, whereas FOG and FG fibers of the EDL contained small- to medium-sized microperoxisomes. Comparing either microperoxisome number per muscle fiber area or microperoxisome area per fiber area revealed significant differences between fiber types with this ranking: soleus SO greater than EDL SO greater than EDL FOG greater than EDL FG. The present observations demonstrate that the content of catalase-positive microperoxisomes is greatest in the oxidative muscle fiber types. These cytochemical findings account for the higher catalase activity in homogenates of soleus muscles as compared to that of EDL muscles, because the soleus contains more oxidative fibers than EDL.  相似文献   

2.
Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.  相似文献   

3.
The populations of fiber types in hindlimb muscles of the tree shrew (Tupaia glis), lesser bushbaby (Galago senegalensis), and the slow loris (Nycticebus coucang) were described and an attempt was made to correlate populations of fiber types and locomotor patterns. Muscle fibers were assigned to one of the following groups: fast-twitch glycolytic (FG), fast-twitch oxidative-glycolytic (FOG), and slow-twitch oxidase (SO). Histochemical techniques for the demonstration of alkaline- and acid-stable ATPase, succinic dehydrogenase, and mitochondrial alpha-glycerophosphate dehydrogenase were used in the classification of muscle fibers. Results indicated that the FG fiber type is the predominant fiber type in muscles used for jumping, the FOG fiber type is predominant in muscles used for running, and the SO fiber type occurs in high percentages in postural muscles. The SO fiber was also the most common fiber in muscles of the slow loris-a species that exhibits a slow, deliberate, sustained locomotor pattern. Intramuscular regional variations in populations were seen in some larger muscles of the tree shrew, but not in the lesser bushbaby and slow loris. Our results did not support the contentions of others that analogous muscles in different species have similar populations of fiber types.  相似文献   

4.
Skeletal muscles can be classified as flexors or extensors according to their function, and as dorsal or ventral according to their position. The latter classification evokes their embryological origin from muscle masses initially divided during limb development, and muscles sharing a given position do not necessarily perform the same function. Here, we compare the relative proportions of different fiber types among six limb muscles in the lizard Tropidurus psammonastes. Individual fibers were classified as slow oxidative (SO), fast glycolytic (FG) or fast oxidative-glycolytic (FOG) based on mitochondrial content; muscles were classified according to position and function. Mixed linear models considering one or both effects were compared using likelihood ratio tests. Variation in the proportion of FG and FOG fibers is mainly explained by function (flexor muscles have on average lower proportions of FG and higher proportions of FOG fibers), while variation in SO fibers is better explained by position (they are less abundant in ventral muscles than in those developed from a dorsal muscle mass). Our results clarify the roles of position and function in determining the relative proportions of the various muscle fibers and provide evidence that these factors may differentially affect distinct fiber types.  相似文献   

5.
Studies of medium- and large-bodied avian species have suggested that variation in flight muscle composition is related to differences in flight behavior. For example, slow-twitch or tonic fibers are generally found only in the flight muscles of non-volant or soaring/gliding birds. However, we know comparatively little about fiber composition of the muscles of the smallest birds. Here we describe the fiber composition of muscles from the wings, shoulders, and legs of two small avian species, which also display very high wingbeat frequencies: Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata). All flight muscles examined in both species contained exclusively fast oxidative glycolytic (FOG) fibers. These unique results suggest that fast oxidative fibers are both necessary and sufficient for the full range of flight behaviors in these small-bodied birds. Like all other studied birds, the zebra finch gastrocnemius, a tarsometatarsal extensor, contained a mixture of FOG (27.1%), slow oxidative (SO, 12.7%), and fast glycolytic (FG, 60.2%) fibers. By contrast, the hummingbird gastrocnemius lacked FG fibers (85.5% FOG, 14.5% SO), which may reflect the reduced role of the hindlimb during take-off. We further hypothesize that thermogenic requirements constrain fiber type heterogeneity in these small endothermic vertebrates.  相似文献   

6.
The purpose of this study was to estimate the absolute and relative masses of the three types of skeletal muscle fibers in the total hindlimb of the male Sprague-Dawley rat (Rattus norvegicus). For six rats, total body mass was recorded and the following weights taken from dissection of one hindlimb: 32 individual major muscles or muscle parts, remaining skeletal musculature (small hip muscles and intrinsic foot muscles), bone, inguinal fat pad, and skin. The fibers from the 32 muscles or muscle parts (which constituted 98% of the hindlimb skeletal muscle mass) were classified from histochemistry as fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), or slow-twitch oxidative (SO), and their populations were determined. Fiber cross-sectional areas from the same muscles were measured with a digitizer. Mass of each of the fiber types within muscles and in the total hindlimb was then calculated from fiber-type population, fiber-type area, and muscle-mass data. Skeletal muscle made up 71% of the total hindlimb mass. Of this, 76% was occupied by FG fibers, 19% by FOG fibers, and 5% by SO fibers. Thus, the FG fiber type is clearly the predominant fiber type in the rat hindlimb in terms of muscle mass. Fiber-type mass data are compared with physiological (blood flow) and biochemical (succinate dehydrogenase activities) data for the muscles taken from previous studies, and it is demonstrated that these functional properties are closely related to the proportions of muscle mass composed of the various fiber types.  相似文献   

7.
Twenty 4-week-old Wistar rats exercised voluntarily in running wheels each day for 45 days. Fibre type composition, fibre cross-sectional area and the number of capillaries around a fibre of the slow-twitch soleus and fast-twitch plantaris muscles were examined and compared with animals which had no access to running wheels. The exercise group had a higher percentage of fast-twitch oxidative glycolytic (FOG) fibres and a lower percentage of fast-twitch glycolytic (FG) fibres in the deep portion of the plantaris muscle. The area of FOG fibres in the surface portion of the plantaris muscle was also greater in the exercise group. In the exercised animals, there was a positive relationship between the running distance and the area of FOG fibres in both the deep and surface portions of the plantaris muscle. In addition, the running distance correlated positively with the percentage of FOG fibres and negatively with that of FG fibres in the deep portion of the plantaris muscle. There were no relationships between the running distance and fibre type composition, or fibre area and capillary supply in the soleus muscle. These results suggested that the increase in the percentage and area of FOG fibres in the fast-twitch muscle was closely related to voluntary running.  相似文献   

8.
The central portion of the medial head of the gastrocnemius of control (normoxic and normothermic), hypoxia-, cold-, and cold plus hypoxia-acclimated guinea pigs was analyzed for capillary supply and fiber composition to elucidate changes in capillarity induced by environmental stresses. The muscle was cut at midbelly, frozen, sectioned, and stained for myosin ATPase. Fiber cross-sectional areas; percentages of slow-twitch oxidative (SO), fast-twitch oxidative-glycolytic (FOG), and fast-twitch glycolytic (FG) fibers; and numbers of capillaries around each fiber type were measured. Growth rates of all four guinea pig groups were similar. Capillarity was not affected by acclimation to hypoxia. Cold and cold plus hypoxia acclimation led to increased numbers of capillaries around the fiber in all three fiber types. In addition, significant increases in the percentage of FOG fibers and concomitant decreases in the percentage of FG fibers compared to controls were found in cold and in cold plus hypoxia indicating that a transformation of fiber type from FG to FOG had occurred. The increase in FOGs at the expense of the FGs did not occur in the guinea pigs grown in a hypoxic environment. The increased total capillarity in those muscles studied was the result of more capillaries around all fiber types and was not due to simple transformation of fibers.  相似文献   

9.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

10.
We studied the fiber types and contractile properties of the extensor digitorum longus (EDL) and soleus (SOL) muscles from young adult mice, rats and guinea pigs, and the correlation between these two parameters. Individual fibers in both muscles were classified as fast-twitch glycolytic (FG), fast-twitch oxidative glycolytic (FOG) or slow-twitch oxidative (SO) fibers according to Peter et al., and type II B, II A, or I fibers according to Brooke & Kaiser. Contractile properties were measured in situ at 37 degrees C. The isometric twitch contraction time (CT) and one-half relaxation time (1/2 RT) tended to be shortened in proportion to the area occupied by type II fibers, and type II B fibers. However, the differences between CT and fiber types were not always uniform among the three species. The CT of the rat EDL, in spite of its higher proportion of type II B fibers about 10% was the same as that of the guinea-pig EDL. The SOL of the mouse, composed of about 50% type I (SO) fibers, had a CT about as short as that of the EDL. In the case of the classification by Peter et al., the relationship between the percentage of subgroups of fast-twitch fibers and the CT or 1/2 RT, but not the resistance to fatigue, was not obvious. The resistance to fatigue tended to be enhanced in proportion to the area occupied by FOG in the EDL and by SO (type I) in the SOL. These results suggest that the contractile properties of individual fibers identified histochemically are distinct among animal species, producing interspecies differences in fiber types along with different contractile properties. However, it may be possible to compare the difference between fiber types and CT or 1/2 RT in the classification based on the pH lability of myosin ATPase, and also the difference between fiber types and resistance to fatigue in the classification based on the oxidative enzyme.  相似文献   

11.
The present study examined the fiber-type proportions of 22 muscles spanning the shoulder and/or elbow joints of three Macaca mulatta. Fibers were classified as one of three types: fast-glycolytic (FG), fast-oxidative-glycolytic (FOG), or slow-oxidative (SO). In most muscles, the FG fibers predominated, but proportions ranged from 25-67% in different muscles. SO fibers were less abundant except in a few deep, small muscles where they comprised as much as 56% of the fibers. Cross-sectional area (CSA) of the three fiber types was measured in six different muscles. FG fibers tended to be the largest, whereas SO fibers were the smallest. While fiber-type size was not always consistent between muscles, the relative size of FG fibers was generally larger than FOG and SO fibers within the same muscle. When fiber CSA was taken into consideration, FG fibers were found to comprise over 50% of the muscle's CSA in almost all muscles.  相似文献   

12.
The effect of growth on the capillarity and fiber type composition of the diaphragm, soleus and extensor digitorum longus (EDL) muscles of rats weighing between 55 and 330 g have been studied. Muscle samples obtained from the anesthetized rat were rapidly frozen and sliced transversely in a cryostat. The sections were stained histochemically by the SDH method and the myosin ATPase method after preincubation at pH 4.3 to typify fibers (FG, FOG and SO fibers). To visualize capillaries, the myosin ATPase method after preincubation at pH 4.0 was used. The percentage of FOG fibers decreased in all muscles with growth. While the FG and SO fibers increased in the diaphragm, SO fibers increased in the soleus, and FG fibers increased in the EDL. The capillary density showed a hyperbolic decrease with growth in all muscles, while the number of capillaries around each fiber increased in all muscles with growth. It is concluded that growth causes the changing properties of the motoneurons and the new capillary formation in the diaphragm muscle, as well as the soleus and EDL muscles.  相似文献   

13.
We used acid digestion and glycogen depletion to determine fascicle organization, fiber morphology, and physiological and anatomical features of individual motor units of an in-series muscle, the pectoralis (pars thoracicus) of the pigeon (Columba livia). Most fascicles are attached at one end to connective tissue. Average fiber length in the four regions examined range from 42% to 66% of average fascicle length. More than 65% of fibers are blunt at one end of a fascicle and taper intrafascicularly. Fibers with blunt–blunt endings range from 13% to 31% of the population in different regions; taper–taper fibers range from 2% to 17%. Pigeon pectoralis fibers are distinguished histochemically into fast-twitch glycolytic (FG) and fast-twitch oxidative-glycolytic (FOG) populations. Three units composed of FG fibers (FG units) contract more quickly than three units composed of FOG fibers (FOG units) (range 31–37 vs 47–62 msec), produce more tetanic force (0.11–0.32 vs 0.02–0.05 N) and are more fatigable (<18% initial force vs >50% after repeated stimulation). Most motor units are confined to one of the four muscle regions. Territory of two FOG units is <30% of parent fascicle length. Territories of other units spanned parent fascicles; most fibers in these units do not extend the full fascicle length. Compared to FG units, FOG units have lower maximum innervation ratios and density indices (ratio of depleted/total FOG fibers in territory 8–14% vs 58–76% for FG units). These differences support the hypothesis that FG units are organized to produce substantial force and power for takeoff, landing and other ballistic movements whereas FOG units are suited for sustained flight when power requirements are reduced. Implications of findings for understanding the control of in-series muscles and the use of connective tissue elastic elements during wing movements are discussed. J.Morphol. 236:179–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
In previous studies differences were frequently found between the pharyngeal dilator muscles and the thoracic respiratory muscles in their patterns of electrical and mechanical activity during the respiratory cycle, with both resting and stimulated breathing. However, little is known about the intrinsic properties of the pharyngeal muscles and how they relate to the intrinsic properties of the diaphragm. In the present study, the fiber subtype distributions of two pharyngeal dilator muscles, the geniohyoid and the sternohyoid, were ascertained histochemically in the cat. The geniohyoid and the sternohyoid muscles had a preponderance of fast glycolytic (FG) fibers (mean 48 and 55%, respectively), a smaller number of fast oxidative-glycolytic (FOG) fibers (mean 36 and 31%, respectively), and few slow oxidative (SO) fibers (mean 16 and 14%, respectively). The percentages of SO fibers of both hyoid muscles were significantly (P less than 0.01) lower than that of the costal diaphragm, and the percentages of FOG and FG fibers were significantly higher than that of the diaphragm. In conclusion, the geniohyoid and sternohyoid muscles have histochemical characteristics usually associated with fast contraction and intermediate endurance properties.  相似文献   

15.
Summary The ultrastructure of fast-twitch-oxidative-glycolytic (FOG), fasttwitch-glycolytic (FG) and slow-twitch-oxidative (SO) fibers in plantaris and soleus muscles of normal and streptozotocin-diabetic rats was studied. In the diabetic animals, the mitochondria of FOG and SO fibers showed a loss of cristae and an increase in electron-dense granules. There was also an increased number of lipid droplets in close proximity to the mitochondria and the nuclei, and a separation of individual muscle nuclei to form satellite cells. Higher incidences of surface projections and sarcoplasmic splittings at the nuclear region were noticed in SO fibers. The FG fibers showed some disorientation of the T-tubular system. It is concluded that streptozotocin-diabetes has differential effects on the fine structure of the three fiber types of rat skeletal muscle.Supported by USPHS Grant AM 18280-04, Boston University Grant GRS-405-BI, and a grant-in-aid award from Sigma Xi Society  相似文献   

16.
Histochemical analysis of five muscles from the water monitor, Varanus salvator, identified three major classes of fibers based on histochemical activities of the enzymes myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alpha-glycerophosphate dehydrogenase (alpha GPDH). Fast-twitch, glycolytic (FG) fibers were the most abundant fiber type and exhibited the following reaction product intensities: mATPase, dark; SDH, light; alpha GPDH, moderate to dark. Fast-twitch, oxidative, glycolytic (FOG) fibers were characteristically mATPase, dark; SDH, light; alpha GPDH, moderate to dark. The third class of fibers had the following histochemical characteristics: mATPase, light; SDH, moderate to dark; alpha GPDH, light. These fibers were considered to be either slow twitch, or tonic, and oxidative (S/O). Pyruvate kinase (PK), alpha GPDH, and citrate synthase (CS) activities were measured in homogenates of the same muscles studied histochemically. There was a positive relationship between both PK and alpha GPDH activities and the percentage of glycolytic fiber types within a muscle. Likewise, CS activities were greater in muscles high in FOG and S/O content. Based on CS activities, Varanus S/O fibers were eight-fold more oxidative than FG fibers within the same muscle. PK/CS ratios suggested that FG fibers possess high anaerobic capacity, similar to the iguanid lizard Dipsosaurus. The fiber type composition of the gastrocnemius muscle, relative to that of other lizard species, suggests that varanid lizards may possess a greater proportion of FOG and S/O fibers than other lizards.  相似文献   

17.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The iliofibularis is a hindlimb muscle used in lizard locomotion that is composed of at least three types of fibres: fast‐twitch‐glycolytic (FG), fast‐twitch‐oxidative‐glycolytic fibre (FOG) and slow‐twitch‐oxidative (SO). The striated skeletal muscle is a highly plastic tissue undergoing phenotypic change in response to activity. The lizard Sceloporus torquatus has sexual differences associated with microhabitat use, which can be reflected in the physiology and anatomy of the muscle, and thus, in our study, we analysed the morphological and contractile characteristics of the iliofibularis muscle (IF) of S. torquatus males and females. We found a larger prevalence of FOG compared with FG and SO fibres in the muscle of both sexes. We also found that males show larger areas of the three types of fibres, develop greater strength but also faster fatigue than females, suggesting that strength is a key functional feature that enables males to perform faster movements (but for shorter periods), associated with the demands of territoriality.  相似文献   

19.
Lactate dehydrogenase (LDH) activity was histochemically localized in fibers of the vastus lateralis muscle of men and for comparative purpose in the soleus and plantaris muscleo of rats. Human muscle fibers were identified as fast twitch (FT) or slow twitch (ST) from the histochemical stain for myofibrillar adenosine triphosphatase activity. Rat skeletal muscle fibers were classified as fast-twitch-oxidative-glycolytic (FOG), fast-twitch-glycolytic (FG), or slow-twitch-oxidative (SO) on the basis of NADH-diaphorase and myofibrillar adenosine triphosphatase activities. Heart-type (H) LDH was identified by inhibition of the muscle-type (M) isozyme with 4 M urea. Total LDH as estimated histochemically was highest in the human FT and rat FG fibers. This was predominantly the M-LDH isozyme. ST fibers of human and SO fibers of rat skeletal muscle had the least total LDH but the most H-LDH activity. The FOG fibers of rat muscle contained a total LDH activity intermediate to that of the FG and SO fibers and a combination of H- and M-LDH. There were no fibers in the human muscle samples studied that had LDH activities similar to the FOG fibers of rat muscle.  相似文献   

20.
Summary The purpose of this investigation was (1) to determine the fiber composition of pectoralis muscle of the little brown bat,Myotis lucifugus; (2) to compare the fiber composition of this muscle with two of the animal's accessory flight muscles; and (3) to study the effect of hibernation on pectoralis muscle fiber composition. Bat skeletal muscle fibers were also compared with those of white laboratory rats (Rattus norvegicus). Bat pectoralis muscles possessed exceptionally high oxidative capacities as indicated by their succinate dehydrogenase activities, but relatively low glycolytic potentials (phosphofructokinase activities). Muscle histochemistry demonstrated that fiber composition of bat pectorlis muscle was homogeneous; all fibers possessed high aerobic and low glycolytic potentials, and high myofibrillar ATPase activities indicating fast contractile properties. In contrast, accessory flight muscles possessed three distinguishable fiber types. During hibernation there was a significant decline in oxidative potential, no change in glycolytic potential, and no alteration in basic fiber composition of bat pectoralis muscle. The findings of this study suggest that pectoralis muscles ofM. lucifugus may approach the ultimate adaptation of a mammalian locomotory muscle for aerobic generation of muscular power.Abbreviations FG fast-twich glycolytic - FOG fast-twitch-oxydative-glycolytic - -GPDH -glycerophosphate dehydrogenase - LDH lactate dehydrogenase - NADH-D reduced nicotinamide adenine dinucleotide diaphorase - PFK phosphofructokinase - SDH succinate dehydrogenase - SO slowtwich-oxidative  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号