首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio parahaemolyticus was grown in tryptic soy broth (TSB) containing NaCl levels of 0.5, 3.0, and 7.5% (wt/vol). Cultures incubated at 21, 29, and 37 C were harvested in late exponential phases and thermal death times at 47 C (D47 c; time at 47 C required to reduce the viable population by 90%) were determined in phosphate buffer containing 0.5, 3.0, and 7.5% NaCl. At a given NaCl concentration in the growth medium, D47 c values increased with elevated incubation temperatures and with elevated levels of NaCl in the heating menstrua. Differences in thermal resistance of cells cultured at a particular temperature were greater between those grown in TSB containing 0.5 and 3.0% NaCl than between those grown in TSB containing 3.0 and 7.5% NaCl. D47c values ranged from 0.8 min (grown at 21 C in TSB with 0.5% NaCl) to 6.5 min (grown at 37 C in TSB with 7.5%, heated in 7.5% NaCl buffer). Methyl esters of major phospholipid fatty acids extracted from cells were quantitated. The ratio of saturated to unsaturated fatty acids in cells grown at a given NaCl concentration increased with elevated incubation temperature. At a particular growth temperature, however, saturated to unsaturated fatty acids ratios were lowest for cells grown in TSB containing 3.0% NaCl.  相似文献   

2.
Addition of NaCl at 2.5% to 3.5% to tryptic soy broth (TSB) significantly increased the growth of Vibrio parahaemolyticus. Taiwan abalone Haliotis diversicolor supertexta held in 30 per thousand seawater were injected with V. parahaemolyticus grown in TSB containing NaCl at 0.5, 1.5, 2.5, 3.5 and 4.5% at a dose of 1.6 x 10(5)colony-forming units (cfu) abalone(-1). After 48 h, the cumulative mortality was significantly higher for the abalone challenged with V. parahaemolyticus grown in 2.5% than those grown in 0.5 and 1.5% NaCl. In other experiments, abalones held in 30 per thousand seawater were injected with TSB-grown V. parahaemolyticus (1.6 x 10(5)cfu abalone(-1)), and then transferred to 20, 25, 30 and 35 per thousand seawater. All abalones held in 20 per thousand were killed in 48 h. The mortality of V. parahaemolyticus-injected abalone held in 30 per thousand was significantly lower over 24-120 h. Abalone held in 30 per thousand seawater and then transferred to 20, 25, 30 and 35 per thousand were examined for THC (total haemocyte count), phenoloxidase activity, respiratory burst, phagocytic activity and clearance efficiency of V. parahemolyticus after 24 and 72 h. The THC increased directly related with salinity levels. Phenoloxidase activity, respiratory burst, phagocytic activity and clearance efficiency of V. parahaemolyticus decreased significantly for the abalone in 20, 25 and 35 per thousand. It is concluded that the abalone transferred from 30 per thousand to 20, 25 and 35 per thousand had reduced immune ability and decreased resistance against V. parahaemolyticus infection.  相似文献   

3.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

4.
The concentrations of intracellular solutes in Listeria monocytogenes were examined in cells grown at various concentrations of NaCl. At 5% NaCl, cells contained elevated concentrations of potassium and glycine betaine compared with concentrations in cells grown without NaCl. At 7.5% NaCl, cells contained increased concentrations of K+, glycine betaine, glycine, alanine, and proline. Only glycine betaine, choline, or glycine promoted growth on a solidified defined medium containing 4% NaCl; there was no growth at higher concentrations of NaCl in the defined medium.  相似文献   

5.
Procedure for Isolation and Enumeration of Vibrio parahaemolyticus,   总被引:7,自引:5,他引:2       下载免费PDF全文
An evaluation of criteria used in the identification of Vibrio parahaemolyticus showed that cultural responses varied with respect to growth in broth with 10% NaCl, type of hemolysis, reactions in triple sugar-iron-agar, and serological reactions. With few or no exceptions, cultures were positive for cytochrome oxidase, utilized glucose fermentatively, were sensitive to pteridine (0/129) and novobiocin, and failed to grow in Trypticase soy broth (TSB) without NaCl. A procedure employing a direct plating technique, with or without prior enrichment, was designed for the isolation and enumeration of V. parahaemolyticus. The plating medium consisted of 2.0% peptone, 0.2% yeast extract, 1.0% corn starch, 7% NaCl, and 1.5% agar, with the pH adjusted to 8.0. The enrichment broth was TSB with 7% NaCl. Dilutions of food homogenates were either spread directly on the plates or inoculated into enrichment broth. TSB enrichments were incubated at 42 C for 18 hr. A loopful of the TSB tubes then was streaked onto the direct plating medium. Incubation of plates was at 42 C for 24 to 48 hr. Smooth, white to creamy, circular, amylase-positive colonies were then picked as suspect V. parahaemolyticus. Confirmation of gram-negative, fermentative, oxidase-positive, pleomorphic rods sensitive to pteridine 0/129 was made by a fluorescent-antibody technique. With this procedure, a satisfactory quantitative recovery of known V. parahaemolyticus from inoculated seafoods was made possible. V. parahaemolyticus was nto isolated from other salted foods.  相似文献   

6.
Cells of Escherichia coli, Pseudomonas fluorescens, and Staphylococcus aureus, previously grown in Trypticase Soy Broth (TSB) at a high level of available moisture (a(w) 0.994) and at low levels produced by addition of NaCl or glucose, were heated in neutral phosphate buffer, and in this buffer adjusted to low levels of available moisture by means of NaCl or glucose. Glucose in the heating medium was more protective than NaCl for E. coli and P. fluorescens, but hastened the thermal destruction of S. aureus. Added protection was given P. fluorescens during heating in glucose-buffer solution at a(w) 0.97 by previous growth in TSB adjusted to that a(w) value with glucose. Added protection was given E. coli during heating in NaCl-buffer solution at a(w) 0.98 by previous growth in TSB adjusted to that value with NaCl. With S. aureus, however, previous growth in TSB plus NaCl or glucose had little effect on heat resistance, but the solute in the heating medium had great influence, in that NaCl was very protective and glucose destructive. Opportunity may have been given during tempering of the cell suspension at 30 C in the heating medium prior to heating for the NaCl and glucose to diffuse into the staphylococcal cells.  相似文献   

7.
Cultures containing mixed flora from raw milk were heated at 62.8 C for 15, 20, 25, and 30 min. Dilutions were filtered through membrane filters, and the filters were incubated on Trypticase soy broth (TSB) and on TSB plus NaCl (TSBS). The TSB count indicated the total population which survived heating and included injured and uninjured cells. The colonies on TSBS indicated the uninjured cells and were marked by perforating the membrane near the colony. This membrane was then transferred to fresh TSB and incubated further. The injured organisms recovered and formed colonies which could be distinguished from previous colonies of uninjured organisms. Transfer counts on TSB were not substantially different from the initial TSB counts at 15, 20, 25, and 30 min of heating.  相似文献   

8.
We have found that Na+ is required for the alkalotolerance of the cyanobacterium Synechococcus leopoliensis. Cell division did not occur at any pH in the absence of Na+, but cells inoculated into Na+-free growth medium at pH 6.8 did continue metabolic activity, and over a period of 48 h, the cells became twice their normal size. Many of these cells remained viable for at least 59 h and formed colonies on Na+ -containing medium. Cells grown in the presence of Na+ and inoculated into Na+ -free growth medium at pH 9.6 rapidly lost viability. An Na+ concentration of ca. 0.5 milliequivalents X liter-1 was required for sustained growth above pH 9.0. The Na+ requirement could be only partially met by Li+ and not at all by K+ or Rb+. Cells incubated in darkness in growth medium at pH 6.8 had an intracellular pH near neutrality in the presence or absence of Na+. When the external pH was shifted to 9.6, only cells in the presence of Na+ were able to maintain an intracellular pH near 7.0. The membrane potential, however, remained high (-120 mV) in the absence or presence of Na+ unless collapsed by the addition of gramicidin. Thus, the inability to maintain a neutral intracellular pH at pH 9.6 in the absence of Na+ was not due to a generalized disruption of membrane integrity.Even cells containing Na+ still required added Na+ to restore photosynthetic rates to normal after the cells had been washed in Na+ -free buffer at pH 9.6. This requirement was only partially met by Li+ and was not met at all by K+, Rb+, Cs+ Mg2+, or Ca2+. The restoration of photosynthesis by added Na+ occurred within 30 s and suggests a role for extracellular Na+. Part of our results can be explained in terms of the operation of an Na+/H+ antiporter activity in the plasma membrane, but some results would seem to require other mechanisms for Na+ action.  相似文献   

9.
AIMS: The purpose of this study was to compare a recently described medium, thiosulphate-chloride-iodide (TCI), for the isolation of estuarine vibrios with thiosulphate-citrate-bile salts-sucrose (TCBS). METHODS: A total of 492 colonies which developed on these media from estuarine water samples taken monthly over a 10-month period were examined. RESULTS: A much larger number of colonies developed on TCBS than TCI, and minimal taxonomic criteria indicated that a higher percentage (61%) of TCBS colonies could be identified as Vibrio spp. when compared with TCI (46%). SIGNIFICANCE: This study suggests that TCBS is a superior medium when compared with TCI for the isolation of Vibrio spp. from estuarine waters. Because of the public health risk presented by V. vulnificus, V. parahaemolyticus, V. cholerae and other vibrios, the selection of the most appropriate medium for their isolation is extremely important.  相似文献   

10.
An unidentified halophile isolated from plates of a complex agar medium containing 4.25 M NaCl showed optimum growth in broths containing 0.5-1.0 M NaCl but exhibited a wide range of growth from 0.045-4.5 M. The organism can be classified as a facultative halophile with wide salt tolerance. Logarithmic phase cells grown in media containing 0.5 M NaCl were rod-shaped in long chains which changed to smaller, single, or paired cells in stationary growth. The internal Na+ and K+ concentrations were 0.05 M and 0.34 M for logarithmic phase cells and 0.29 and 0.32 M for stationary phase cells. In 4.3 M NaCl media the cells were rod-shaped throughout the growth cycle, occurring primarily in pairs. The internal Na+ K" concentrations in cells in logarithmic phase growth were 0.62 M and 0.58 M while in stationary phase growth these values were 1.01 M and 0.66 M respectively. In contrast, logarithmic phase cells of the extreme halophile Halobacterium cutirubrum had internal Na+ and K+ concentrations of 0.80 M and 5.32 M when grown in 3.3 M NaCl. The internal Na+ and K+ concentrations, therefore, in the unidentified halophile do not resemble those found in H. cutirubrum but are much closer to those present in Escherichia coli.  相似文献   

11.
Lac- strains of Vibrio parahaemolyticus were converted to Lac+ on receiving a hybrid plasmid containing the lactose utilization genes of Escherichia coli K-12. A V. parahaemolyticus strain containing this hybrid plasmid exhibited optimal growth rates on glucose and other carbon sources in the presence of 0.2 to 0.4 M NaCl. Growth of the same strain on lactose was inhibited at similar concentrations of NaCl. The altered growth rate responses in lactose medium appeared to be attributable to effects of NaCl on the activity of lactose permease, and possibly on that of beta-galactosidase, rather than on the levels of these enzymes in V. parahaemolyticus cells.  相似文献   

12.
Lac- strains of Vibrio parahaemolyticus were converted to Lac+ on receiving a hybrid plasmid containing the lactose utilization genes of Escherichia coli K-12. A V. parahaemolyticus strain containing this hybrid plasmid exhibited optimal growth rates on glucose and other carbon sources in the presence of 0.2 to 0.4 M NaCl. Growth of the same strain on lactose was inhibited at similar concentrations of NaCl. The altered growth rate responses in lactose medium appeared to be attributable to effects of NaCl on the activity of lactose permease, and possibly on that of beta-galactosidase, rather than on the levels of these enzymes in V. parahaemolyticus cells.  相似文献   

13.
Mouse C3H 10T1/2 cells exhibited a two- to threefold increase in the concentration of free Ca2+ during heating at 45 degrees C. The increase was maximal for a heat dose which was still in the shoulder region of the survival curve. The increase was fully reversible in heat-sterilized cells. By changing the concentration of extracellular Ca2+, it was possible to modulate the concentration of intracellular free Ca2+ in heated cells. Lowering the extracellular concentration to 0.03 mM reduced the baseline concentration of intracellular free Ca2+, and prevented it from increasing in heated cells to a level exceeding that of nonheated cells incubated in medium containing 2.0 or 5.0 mM Ca2+. Raising the concentration of extracellular Ca2+ to 15.0 mM raised the baseline, and resulted in a heat-induced increase in free Ca2+ which was twofold higher than that of cells heated in medium containing 2.0 or 5.0 mM Ca2+. An elevated concentration of intracellular free Ca2+ during and after heating did not potentiate thermal killing, nor did a reduced concentration during and after heating mitigate killing. Furthermore, the data argue against a heat-induced increase in free Ca2+ to some threshold level, which potentiates cell killing by some other parameter. In addition, cells heat-shocked in either 0.03 or 5.0 mM extracellular Ca2+, and then incubated in the same concentration for 12 h at 37 degrees C, developed quantitatively similar amounts of tolerance to a second heating. The data suggest that the concentration of intracellular free Ca2+ does not play a critical role in thermal killing or the induction and development of thermotolerance.  相似文献   

14.
Eighteen gram-negative marine bacteria and two terrestrial species, Escherichia coli and Pseudomonas aeruginosa, were examined for their sensitivity to lysis in distilled water after exposure to a salt solution containing a sea water concentration of Mg2+ (0.05 M) or to 0.5 M NaCl. A spectrum of lytic susceptibility was observed among the marine bacteria ranging from those organisms which lysed in distilled water after exposure to the Mg2+-containing solution, through organisms which could be sensitized to lysis by washing with the NaCl solution, to organisms which failed to lyse in distilled water even after having been washed with a solution of 0.5 M NaCl. Pseudomonas aeruginosa and E. coli fell within this spectrum, the former being capable of being induced to lyse in distilled water by washing with 0.5 M NaCl, while the latter failed to lyse in distilled water after this treatment. It was thus concluded that no overall distinction could be made between marine and terrestrial bacteria on the basis of the sensitivity of the two groups of organisms to lysis in freshwater. Quite large decreases in optical density and increases in the release of ultraviolet-absorbing material took place when cells preexposed to the Mg2+-containing solution or to 0.5 M NaCl were subsequently suspended in distilled water even though in some cases no loss of cell numbers could be detected. In most cases two to three times as much K+ as Na+ and 1/10 to 1/100 as much Mg2+ was required to prevent these changes. For three of the marine bacteria and P. aeruginosa grown in a terrestrial type medium little difference in the requirements for Na+ and K+ to prevent the optical density changes was noted. For P. aeruginosa grown in a marine type medium, cells required more K+ than Na+ to prevent these changes.  相似文献   

15.
K C Chan  O C Leung  L H Lee 《Microbios》1979,24(96):81-91
Cells of the moderately halophilic Micrococcus varians var. halophilus grew well in a chemically defined medium containing 1 to 3 M NaCl and 0.0103 M K+. The requirement for NaCl could be partially replaced by K+,:Li+ and Cs+. The efficiency of the sparing effect of these cations for NaCl was in order of K+ GReater than Li+ greater than Cs+. Increase in growth temperature was found to enchance the sparing effect of Li+ and Cs+ but not that of K+. Over the range of NaCl concentrations in which the cells grew well, cell-Na+ concentrations were similar to the medium NaCl concentrations while cellK+ concentrations were several-fold that in the medium. Cell-bound Na+ and K+ concentrations increased proportionally with medium NaCl concentration and growth temperature. The temperature-dependent cation accumulation was more obvious with K+ than Na+. The cell-associated Na+ + K+ concentrations were almost as high as or slightly higher than the external media which contained appropriate levels of NaCl regardless of the growth temperature.  相似文献   

16.
Mg2+-availability in Staphylococcus aureus cells decreased significantly with increasing NaCl concentration in growth media. Cells grew in a NaCl-free, Chelex resin-treated complex medium only if the medium was supplemented with 50 microM MgCl2, while, growth was limited when the medium was further supplemented with 1.0 M NaCl. Cells grown in such a high-NaCl/low-Mg2+ medium exhibited the morphologic abnormality of larger than normal cells. Both sufficient growth and normal cell morphology were restored by increasing Mg2+ concentration in a high-NaCl medium, or by supplementation with either CaCl2 or MnSO4 in a high-NaCl/low-Mg2+ medium. Supplementing with BaCl2, SrCl2 or FeSO4, however, had no effect. These results indicate that Ca2+ and Mn2+ might play some essential role in the growth of Staphylococcus aureus in a high-NaCl/low-Mg2+ environment.  相似文献   

17.
The embryonic calli produced from immature embryos of inbred “Huangzhao-4” of maize, that had been maintained for half a year, were transferred to media supplemented with different NaC1 concentrations (5, 10, 15, 20, 25, 30g/L) for callus selection. NaCl tolerant calli were established through three generations of selections. The growth and frequency of survival calli were affected significantly by NaCl concentration. The proliferetion of NaCl-tolerant calli was relatively good on medium containing of 10g/L NaC1. From these calli, plant lets could be produced on differentiation medium. On medium supplemented with 10g/L of NaC1 the plantlets could normally grow to transplantation. In NaCl-tolerant calli cultured on medium containing 10g/L of NaC1, the contents of free amino acids, free proline, Na+, K+ were 18.0%,87.3%,661.9%,25.5% respectively higher than those in un-selected calli grown on subculture medium, but Ca2+ content decreased significantly. On medium containing 10g/L of NaC1, cells and their organelles in NaCl-tolerant calli had normal morphology and structure, and vigorous metabolism, but in un-selected calli, the majority of cells turned to wards dying. Although tolerant plants regenerated and their filial ones had grown in non-salted soil, their progenies retained the property tolerance, but showed segregation of the degrees of tolerance. In 10g/L NaC1 solution, the seeds of progenies from one plant regenerated could germinate normally, and grow into healthy seedlings. Therefore, the NaCl-tolerant calli and plantlets that we have obtained NaCl-tolerant variants.  相似文献   

18.
Sublethal heat stress of Vibrio parahaemolyticus.   总被引:6,自引:6,他引:0       下载免费PDF全文
When Vibrio parahaemolyticsu ATCC 17802 was heated at 41 degrees C for 30 min in 100 mM phosphate-3% NaCl buffer (pH 7.0), the plate counts obtained when using Trypticase soy agar containing 0.25% added NaCl (0.25 TSAS) were nearly 99.9% higher than plate counts using Trypticase soy agar containing 5.5% added NaCl (5.5 TSAS). A similar result was obtained when cells of V. parahaemolyticus were grown in a glucose salts medium (GSM) and heated at 45 degrees C. The injured cells recovered salt tolerance within 3 h when placed in either 2.5 TSBS or GSM at 30 degrees C. The addition of chloramphenicol, actinomycin D, or nalidixic acid to 2.5 TSBS during recovery of cells grown in 2.5 TSBS indicated that recovery was dependent upon protein, ribonucleic acid (RNA, and deoxyribonucleic acid (DNA) synthesis. Penicillin did not inhibit the recovery process. Heat-injured, GSM-grown cells required RNA synthesis but not DNA synthesis during recovery in GSM. Chemical analyses showed that total cellular RNA decreased and total cellular DNA remained constant during heat injury. The addition of [6-3H]uracil, L-[U-14C]leucine, and [methyl-3H]thymidine to the recovery media confirmed the results of the antibiotic experiments.  相似文献   

19.
Bacterial acetone carboxylase catalyzes the ATP-dependent carboxylation of acetone to acetoacetate with the concomitant production of AMP and two inorganic phosphates. The importance of manganese in Rhodobacter capsulatus acetone carboxylase has been established through a combination of physiological, biochemical, and spectroscopic studies. Depletion of manganese from the R. capsulatus growth medium resulted in inhibition of acetone-dependent but not malate-dependent cell growth. Under normal growth conditions (0.5 microm Mn2+ in medium), growth with acetone as the carbon source resulted in a 4-fold increase in intracellular protein-bound manganese over malate-grown cells and the appearance of a Mn2+ EPR signal centered at g = 2 that was absent in malate-grown cells. Acetone carboxylase purified from cells grown with 50 microm Mn2+ had a 1.6-fold higher specific activity and 1.9-fold higher manganese content than cells grown with 0.5 microm Mn2+, consistently yielding a stoichiometry of 1.9 manganese/alpha2beta2gamma2 multimer, or 0.95 manganese/alphabetagamma protomer. Manganese in acetone carboxylase was tightly bound and not removed upon dialysis against various metal ion chelators. The addition of acetone to malate-grown cells grown in medium depleted of manganese resulted in the high level synthesis of acetone carboxylase (15-20% soluble protein), which, upon purification, exhibited 7% of the activity and 6% of the manganese content of the enzyme purified from acetone-grown cells. EPR analysis of purified acetone carboxylase indicates the presence of a mononuclear Mn2+ center, with possible spin coupling of two mononuclear sites. The addition of Mg.ATP or Mg.AMP resulted in EPR spectral changes, whereas the addition of acetone, CO2, inorganic phosphate, and acetoacetate did not perturb the EPR. These studies demonstrate that manganese is essential for acetone carboxylation and suggest a role for manganese in nucleotide binding and activation.  相似文献   

20.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号