首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been considerable interest in the circumsporozoite proteins due to their potential use in anti-malarial vaccines. Previous authors have shown that these proteins persist from the invading sporozoite throughout the growing exoerythrocytic or liver stage. We show that the different distributions of these proteins seen during the development of the exoerythrocytic parasite of Plasmodium berghei closely follow morphological changes, which can be recognized under the light microscope. At the end of the exoerythrocytic cycle, the majority of the remaining circumsporozoite proteins were associated with the spongy stroma in which the emerging exoerythrocytic merozoites lay. Cell-mediated immunity originally directed against sporozoites might recognize the stroma as a second target resulting in the indirect destruction of the exoerythrocytic merozoites.  相似文献   

2.
ABSTRACT. Monoclonal antibodies that react with the circumsporozoite protein of the avian malaria Plasmodium gallinaceum sporozoites also reacted with circumsporozoite protein of the rodent malaria Plasmodium berghei. Two types of reactivity were identified: 1) two monoclonal antibodies reacted with P. berghei sporozoite protein by enzyme-linked immunosorbent assay, Western blot and indirect immunofluorescence antibody, 2) six other monoclonal antibodies reacted with P. berghei sporozoites by ELISA and Western blot only. We studied whether these differences could be explained by reactivity in enzyme-linked immunosorbent assay with different P. berghei circumsporozoite peptides. Although all P. gallinaceum monoclonal antibodies reacted with the P. berghei repeats, the first group reacted with a conserved peptide sequence, N1, whereas the second group did not. These results suggest that circumsporozoite proteins from P. gallinaceum and P. berghei share common epitopes. the biological significance of our finding is not yet clear. Indeed, the cross-reactive monoclonal antibodies giving a positive indirect immunofluorescence antibody with the P. berghei sporozoites only caused a borderline effect on the living P. berghei parasites in vitro as measured by inhibition of sporozoite infectivity.  相似文献   

3.
ABSTRACT. A correlation was observed between in vivo and in vitro activity of six monoclonal antibodies (mAb) against the major circumsporozoite protein of the avian malaria Plasmodium gallinaceum as follows. (1) Two mAb were protective, totally abrogating sporozoite infectivity to chicks, its natural host, in vivo; they caused 100% inhibition of sporozoite invasion (ISI) in vitro to SL-29 chicken fibroblasts and intense ISI to cultured chicken macrophages, as well as inhibited the exoerythrocytic development of sporozoites taken up by macrophages, the initial cell host of P. gallinaceum sporozoites. (2) Two mAb were partially protective in that they reduced sporozoite infectivity to chicks, caused partial ISI to SL-29 and macrophage cells and partial inhibition to the exoerythrocytic development of sporozoites in macrophages in vitro. (3) Two mAb were totally inactive in vivo although they both bound to the sporozoite antigens as detected by indirect immunofluorescence, western blot, and ELISA; they both failed to induce ISI or inhibit the exoerythrocytic development in macrophages. The possible participation of macrophages as the initial cell type involved in sporozoite destruction in the presence of anti-circumsporozoite antibodies is discussed.  相似文献   

4.
Exoerythrocytic forms of Plasmodium gallinaceum were cultured in vitro using salivary gland sporozoites extracted from experimentally infected Aedes fluviatilis mosquitoes. The host cells were macrophage precursors from chicken bone marrow. At various times after introduction of sporozoites, the cultures were stained by Giemsa or by immunofluorescence assay (IFA) using anti-sporozoite-specific monoclonal antibodies (MAb). The time to complete parasite development in vitro was 50-70 h. By 70 h, ruptured segmenters and free merozoites were visible within the cells. Inoculation of normal chickens with infected cultures induced parasitemia after a pre-patent period of 10-11 days. In vitro young exoerythrocytic forms, late schizonts that include the matured segmenters, and free merozoites shared common antigens with the sporozoites as revealed by IFA using anti-sporozoite-specific MAbs. Our data indicate that macrophages support development of P. gallinaceum sporozoites and that the circumsporozoite proteins are present until the end of the primary exoerythrocytic schizogony.  相似文献   

5.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate into exoerythrocytic forms and merozoites that subsequently infect erythrocytes and cause the malaria disease. Plasmodium sporozoite targeting to the liver is mediated by the specific binding of major sporozoite surface proteins, the circumsporozoite protein and the thrombospondin-related anonymous protein, to glycosaminoglycans on the hepatocyte surface. Still, the molecular mechanisms underlying sporozoite entry and differentiation within hepatocytes are largely unknown. Here we show that the tetraspanin CD81, a putative receptor for hepatitis C virus, is required on hepatocytes for human Plasmodium falciparum and rodent Plasmodium yoelii sporozoite infectivity. P. yoelii sporozoites fail to infect CD81-deficient mouse hepatocytes, in vivo and in vitro, and antibodies against mouse and human CD81 inhibit in vitro the hepatic development of P. yoelii and P. falciparum, respectively. We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms.  相似文献   

6.
ABSTRACT Exoerythrocytic forms of Plasmodium gallinaceum were cultured in vitro using salivary gland sporozoites extracted from experimentally infected Aedes fluviatilis mosquitoes. the host cells were macrophage precursors from chicken bone marrow. At various times after introduction of Sporozoites, the cultures were stained by Giemsa or by immunofluorescence assay (IFA) using anti-sporozoite-specific monoclonal antibodies (MAb). the time to complete parasite development in vitro was 50-70 h. By 70 h, ruptured segmenters and free merozoites were visible within the cells. Inoculation of normal chickens with infected cultures induced parasitemia after a pre-patent period of 10-11 days. In vitro young exoerythrocytic forms, late schizonts that include the matured segmenters, and free merozoites shared common antigens with the sporozoites as revealed by IFA using anti-sporozoite-specific MAbs. Our data indicate that macrophages support development of P. gallinaceum sporozoites and that the circumsporozoite proteins are present until Ac end of the primary exoerythrocytic schizogony.  相似文献   

7.
Immunoelectron microscopic techniques were utilized to characterize the morphology of circumsporozoite protein-containing trails deposited on various substrates by gliding Plasmodium berghei and Plasmodium falciparum sporozoites. The basic components of the trails are beadlike particles, 25 to 90 nm in diameter, which are devoid of unit membrane and have an electron-lucent center. Trails were captured on formvar-covered grids coated with anticircumsporozoite protein monoclonal antibodies and compared with trails produced on uncoated formvar; the results suggest that material containing circumsporozoite protein forms the matrix within which the particles are embedded. The trails exhibit morphological features similar to those displayed by circumsporozoite precipitation reactions; of note is the demonstration of sheaths of circumsporozoite protein-containing material that emanate from sporozoites prior to their gliding. The sheaths narrow into accumulations of electron-dense material, which eventually taper to form typical trails. The structural manifestation of sheaths and other morphological details of the formed trails enables us to correlate sporozoite behavior during trail formation with the motile actions of gliding sporozoites observed by light microscopy.  相似文献   

8.
Immunoelectron microscopic techniques were utilized to characterize the morphology of circumsporozoite protein-containing trails deposited on various substrates by gliding Plasmodium berghei and Plasmodium falciparum sporozoites. The basic components of the trails are beadlike particles, 25 to 90 nm in diameter, which are devoid of unit membrane and have an electronlucent center. Trails were captured on formvar-covered grids coated with anticircumsporozoite protein monoclonal antibodies and compared with trails produced on uncoated formvar; the results suggest that material containing circumsporozoite protein forms the matrix within which the particles are embedded. The trails exhibit morphological features similar to those displayed by circumsporozoite precipitation reactions; of note is the demonstration of sheaths of circumsporozoite protein-containing material that emanate from sporozoites prior to their gliding. The sheaths narrow into accumulations of electron-dense material, which eventually taper to form typical trails. The structural manifestation of sheaths and other morphological details of the formed trails enables us to correlate sporozoite behavior during trail formation with the motile actions of gliding sporozoites observed by light microscopy.  相似文献   

9.
A specific DNA probe has been used to quantify the neutralizing effects of monoclonal antibodies (3D11) against the circumsporozoite protein of Plasmodium berghei sporozoites. The amount of parasite DNA was measured in the livers of Norway Brown rats at the peak of proliferation of the exoerythrocytic forms (EEF). In vitro treatment of 1.5 X 10(5) sporozoites with 0.36 microgram/0.5 ml of whole 3D11 IgG neutralized about 90% of the sporozoite infectivity. When the dose was 3.6 micrograms no signal was detected, indicating that less than ten sporozoites developed into EEF in the liver. In contrast, 3.6 micrograms of Fab obtained from 3D11 neutralized sporozoite infectivity by only 60%. Although the neutralizing effect of 3D11 was very marked, the infected rats developed parasitemias after a prolonged delay in patency, suggesting that a small proportion of sporozoites was resistant to the effects of 3D11. The sporozoites were subjected to four cycles of 3D11-mediated selection, each one involving treatment of sporozoites with the antibodies, injection of the mixture into rats, infection of hamsters with blood stage parasites obtained from the rats, feeding of Anopheles stephensi on these hamsters, and obtaining sporozoites from the salivary glands of the infected mosquitoes. After four cycles of selection, the susceptibility of the resulting sporozoites to different concentrations of 3D11 was compared with that of nonselected sporozoites. No differences were detected, indicating that the capacity of a few sporozoites to escape the neutralizing effect of 3D11 antibodies is not inherited.  相似文献   

10.
ABSTRACT. Cultivation of the Plasmodium gallinaceum exoerythrocytic forms from sporozoites was attempted in three diferent cell lines: HEPG2-A16 (from a human hepatoma), VERO (monkey kidney epithelial cells) and SL-29 (chicken embryo fibroblast cells). the sporozoites in vaded all three cell types but their development into exoerythrocytic forms ocurred only in the SL-29 cells. In the presence of specific monoclonal antibodies against the major circumsporozoite protein, there were varying degrees of inhibition of parasite invasion of the SL-29 cells. of seven monoclonal antibodies tested, two completely inhibited cell invasion at high concentrations and caused intense inhibition at concentrations as low as 2.5 μg/ml, four caused intense inhibition at these various concentrations, and one had no effect on sporozoite invasion.  相似文献   

11.
We demonstrate for the first time the presence of a circumsporozoite (CS)-like protein in invasive blood stages of malaria parasites. Immunogold electron microscopy using antisporozoite monoclonal antibodies localized these antigens in the micronemes of merozoites. Western immunoblot and two-dimensional gel electrophoresis of mature blood stage extracts of Plasmodium falciparum, P. berghei, P. cynomolgi, and P. brasilianum identified polypeptides having the same apparent molecular mass and isoelectric points as the corresponding sporozoite (CS) proteins. The CS-like protein of merozoites is present in relatively minor amounts, compared to the CS protein of sporozoites. Mice with long-term P. berghei blood-induced infections develop antibodies which react with sporozoites.  相似文献   

12.
ABSTRACT. Using monospecific antibodies, the presence and distribution of tubulin, actin, myosin, intermediate filaments, and lamins were examined in the exoerythrocytic liver schizont of Plasmodium berghei by conventional indirect fluorescent antibody methods and confocal laser scanning microscopy. the binding reactivity of the antibodies to parasite proteins was determined by Western blot analysis. the localisation of all antibodies in control host hepatocytes followed expected distributions in both uninfected and infected hepatocytes; by contrast, reactivity to the exoerythrocytic schizont was variable. the parasite reacted positively with selected anti-tubulin, -actin, and -myosin antibodies in both fluorescence and Western blot analysis. Anti-lamin antibodies were positive by confocal indirect fluorescent antibody labelling, but no labelling was detected with anti-intermediate filament antibody. Within the technical limits of resolution of the methods as applied to asynchronous parasite infections, not one of the antibodies reacting positively with the parasite by the indirect fluorescent antibody technique could be shown to identify unequivocally the classic architectural features associated with their respective target organelles, i.e. microtubules, stress-fibres or the nuclear envelope.  相似文献   

13.
Plasmodium berghei sporozoites successfully entered and developed into exoerythrocytic schizonts in a variety of cell types cultured in vitro, but segmentation and release of merozoites was only observed in human embryonic lung cells. Exoerythrocytic development was generally not influenced by the culture medium, and NCTC-135 was used routinely. In vitro infectivity of P. berghei sporozoites was unaffected by the serum type used for isolation.  相似文献   

14.
An IgM monoclonal antibody (Mab 36) which reacts with the circumsporozoite (CS) proteins of both P. falciparum and P. berghei was isolated from Plasmodium falciparum sporozoite-immunized mice. In assays of biological activity, Mab 36 induces the CS precipitation reaction with live sporozoites and blocks the invasion of hepatoma cells by sporozoites in vitro at concentrations much lower than those observed for previously reported CS protein-specific monoclonal antibodies. Mab 36 also provided complete protection against P. berghei sporozoite challenge in mice at low doses. Linear epitope mapping revealed that the epitope specificities recognized by Mab 36 are completely encompassed by other monoclonals previously shown to be associated in vivo with protection against P. falciparum or P. berghei sporozoite infection. These results suggest that the ability to make high-affinity IgM antibody to specific CS protein repeat epitopes may be important for eliciting protection against malarial infection.  相似文献   

15.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

16.
Liver biopsies of white rates infected by Plasmodium berghei sporozoites were examined by electron microscopy. Intrahepatocytic schizont development was confirmed. In addition, at 60 and 70 h after sporozoite inoculation, exoerythrocytic merozoites were noted in Kupffer cells of liver sinusoids. Although it is theoretically possible that this observation may be of merozoite development in Kupffer cells, the authors suspect that this example of phagocytosis would be one of the host's natural defenses against sporozoite-transmitted malaria.  相似文献   

17.
SYNOPSIS. Sporozoites of rodent malaria, Plasmodium berghei , and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi , were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulcse column. In addition to eliminating most of the contaminants (80–90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55–75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei. CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence.
It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoites of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media.
Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

18.
The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity.  相似文献   

19.
SYNOPSIS. Liver biopsies of white rates infected by Plasmodium berghei sporozoites were examined by electron microscopy. Intrahepatocytic schizont development was confirmed. In addition, at 60 and 70 h after sporozoite inoculation, exoerythrocytic merozoites were noted in Kupffer cells of liver sinusoids. Although it is theoretically possible that this observation may be of merozoite development in Kupffer cells, the authors suspect that this example of phagocytosis would be one of the host's natural defenses against sporozoite-transmitted malaria.  相似文献   

20.
Sporozoites of rodent malaria, Plasmodium berghei, and simian malaria, Plasmodium knowlesi and Plasmodium cynomolgi, were partially separated from mosquito debris and microbial contaminants by passage of Anopheles material through a DEAE-cellulose column. In addition to eliminating most of the contaminants (80-90%), this simple technic has made it possible to recover rapidly large numbers of viable sporozoites (55-75% yield), which have retained their infectivity, immunogenicity, and capacity to react with known antisera. Mice injected with varying doses of column-purified sporozoites (CS) of P. berghei produced infections which paralleled those seen in the controls. Total protection against challenge with a potentially lethal dose of viable sporozoites was acquired by mice inoculated twice with irradiated CS of P. berghei CS of P. berghei and P. cynomolgi gave positive circumsporozoite precipitation (CSP) reactions, upon inoculation with the respective immune sera. The preservation of the surface antigens of CS was documented by immunofluorescence. It was shown that differences in elution behavior exist among sporozoites of certain species of Plasmodium as well as among sporozoiters of the same species derived from different organs of the mosquito. These results may be attributed to differences in the surface charge of the sporozoites or conditions in sample media. Purified sporozoites obtained by the method described in this report provide an adequate source of parasites for a variety of in vitro studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号