首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.  相似文献   

2.
Many RNAs contain tertiary interactions that contribute to folding the RNA into its functional 3D structure. In the VS ribozyme, a tertiary loop-loop kissing interaction involving stem-loops I and V is also required to rearrange the secondary structure of stem-loop I such that nucleotides at the base of stem I, which contains the cleavage-ligation site, can adopt the conformation required for activity. In the current work, we have used mutants that constitutively adopt the catalytically permissive conformation to search for additional roles of the kissing interaction in vitro. Using mutations that disrupt or restore the kissing interaction, we find that the kissing interaction contributes ~1000-fold enhancement to the rates of cleavage and ligation. Large Mg(2+)-dependent effects on equilibrium were also observed: in the presence of the kissing interaction cleavage is favored >10-fold at micromolar concentrations of Mg(2+); whereas ligation is favored >10-fold at millimolar concentrations of Mg(2+). In the absence of the kissing interaction cleavage exceeds ligation at all concentrations of Mg(2+). These data provide evidence that the kissing interaction strongly affects the observed cleavage and ligation rate constants and the cleavage-ligation equilibrium of the ribozyme.  相似文献   

3.
In the Neurospora VS ribozyme, magnesium ions facilitate formation of a loop-loop interaction between stem-loops I and V, which is important for recognition and activation of the stem-loop I substrate. Here, we present the high-resolution NMR structure of stem-loop V (SL5) in the presence of Mg(2+) (SL5(Mg)) and demonstrate that Mg(2+) induces a conformational change in which the SL5 loop adopts a compact structure with most characteristics of canonical U-turn structures. Divalent cation-binding sites were probed with Mn(2+)-induced paramagnetic line broadening and intermolecular NOEs to Co(NH(3))(6)(3+). Structural modeling of Mn(H(2)O)(6)(2+) in SL5(Mg) revealed four divalent cation-binding sites in the loop. Sites 1, 3, and 4 are located in the major groove near multiple phosphate groups, whereas site 2 is adjacent to N7 of G697 and N7 of A698 in the minor groove. Cation-binding sites equivalent to sites 1-3 in SL5 are present in other U-turn motifs, and these metal-binding sites may represent a common feature of the U-turn fold. Although magnesium ions affect the loop conformation, they do not significantly change the conformation of residues 697-699 involved in the proposed Watson-Crick base pairs with stem-loop I. In both the presence and the absence of Mg(2+), G697, A698, and C699 adopt an A-form structure that exposes their Watson-Crick faces, and this is compatible with their proposed interaction with stem-loop I. In SL5(Mg), however, U700 becomes exposed on the minor groove face of the loop in the proximity of the bases of G697, A698, and C699, suggesting that the Mg(2+)-bound conformation of stem-loop V allows additional contacts with stem-loop I. These studies improve our understanding of the role of Mg(2+) in U-turn structures and in substrate recognition by the VS ribozyme.  相似文献   

4.
Hiley SL  Collins RA 《The EMBO journal》2001,20(19):5461-5469
We have used hydroxyl radicals generated by decomposition of peroxynitrous acid to study Mg(2+)-dependent structure and folding of the Varkud satellite (VS) ribozyme. Protection from radical cleavage shows the existence of a solvent-inaccessible core, which includes nucleotides near two three-helix junctions, the kissing interaction between stem-loops I and V and other nucleotides, most of which have also been implicated as important for folding or activity. Kinetic folding experiments showed that the ribozyme folds very quickly, with the observed protections completely formed within 2 s of addition of MgCl(2). In mutants that disrupt the kissing interaction or entirely remove stem-loop I, which contains the cleavage site, nucleotides in the three-helix junctions and a subset of those elsewhere remain protected. Unlike smaller ribozymes, the VS ribozyme retains a significant amount of structure in the absence of its substrate. Protections that depend on proper interaction between the substrate and the rest ribozyme map to a region previously proposed as the active site of the ribozyme and along both sides of helix II, identifying candidate sites of docking for the substrate helix.  相似文献   

5.
We have constructed a ribozyme containing 144 nucleotides of Neurospora VS RNA that can catalyze the cleavage of a separate RNA in a true enzymatic manner (Km approximately 0.13 microM, kcat approximately 0.7/min). Comparison of the rates of cis- and trans-cleavage, as well as the lack of effect of pH on the rate of cleavage, suggest that a rate-limiting step, possibly a conformational change, occurs prior to cleavage. The minimum contiguous substrate sequence required for cleavage consists of one nucleotide upstream and 19 nucleotides downstream of the cleavage site. Unlike most other ribozymes which interact with long single-stranded regions of their substrates, the minimal substrate for the VS ribozyme consists mostly of a stable stem-loop, which would appear to preclude its recognition simply via extensive Watson-Crick base pairing.  相似文献   

6.
The VS ribozyme is the largest ribozyme in its class and is also the least structurally characterized thus far. The current working model of the VS ribozyme locates the active site in stem-loop VI. The solution structure of this active site loop was determined using high resolution NMR spectroscopy. The structure reveals that the ground-state conformation of the active site differs significantly from that determined previously from chemical structure probing and mutational analysis of the ribozyme in its active conformation, which contains several looped out bases. In contrast, the base-pairing scheme found for the isolated loop contains three mismatched base-pairs: an A+-C, a G-U wobble, and a sheared G-A base-pair and no looped out bases. Dynamics observed within the active site loop provide insight into the mechanism by which the RNA can rearrange its secondary structure into an "activated" conformation prior to cleavage. These findings lend support to the idea that RNA secondary structure is more fluid than once believed and that a better understanding of structure and dynamic features of ribozymes is required to unravel the intricacies of their catalytic abilities.  相似文献   

7.
We have investigated the effects of Co(NH3)6(3+), an analog of hexahydrated Mg2+, on folding and catalysis of the Neurospora VS ribozyme. Most of the metal ion-induced changes detected by chemical modification structure probing in either metal ion are similar, but occur at approximately 33-fold lower concentrations of Co(NH3)6(3+) than Mg2+. However, Co(NH3)6(3+) is not as effective at inducing two functionally important structural changes: stabilizing the pseudoknot interaction between loops I and V, and rearranging the secondary structure of helix Ib. Comparison of the folding of the precursor and the downstream cleavage product, which lacks helix Ia, shows that helix Ia inhibits stable pseudoknot formation and rearrangement of helix Ib. The VS ribozyme does not self-cleave with Co(NH3)6(3+) as the sole polyvalent cation; however, mixed-metal kinetic experiments show that Co(NH3)6(3+) does not inhibit Mg2+-induced self-cleavage. In contrast, at sub-saturating concentrations of Mg2+, Co(NH3)6(3+) increases the rate of Mg2+-induced self-cleavage, indicating that Co(NH3)6(3+) contributes to the functionally relevant folding of the VS ribozyme.  相似文献   

8.
Campbell DO  Legault P 《Biochemistry》2005,44(11):4157-4170
An important step in the substrate recognition of the Neurospora Varkud Satellite (VS) ribozyme is the formation of a magnesium-dependent loop/loop interaction between the terminal loops of stem-loops I and V. We have studied the structure of stem-loop V by nuclear magnetic resonance spectroscopy and shown that it adopts a U-turn conformation, a common motif found in RNA. Structural comparisons indicate that the U-turn of stem-loop V fulfills some but not all of the structural characteristics found in canonical U-turn structures. This U-turn conformation exposes the Watson-Crick faces of the bases within stem-loop V (G697, A698, and C699) and makes them accessible for interaction with stem-loop I. Using chemical-shift mapping, we show that magnesium ions interact with the loop of the isolated stem-loop V and induce a conformational change that may be important for interaction with stem-loop I. This study expands our understanding of the role of U-turn motifs in RNA structure and function and provides insights into the mechanism of substrate recognition in the VS ribozyme.  相似文献   

9.
Golden BL 《Biochemistry》2011,50(44):9424-9433
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.  相似文献   

10.
The Neurospora VS ribozyme is a small nucleolytic ribozyme with unique primary, secondary and global tertiary structures, which displays mechanistic similarities to the hairpin ribozyme. Here, we determined the high-resolution NMR structure of a stem-loop VI fragment containing the A730 internal loop, which forms part of the active site. In the presence of magnesium ions, the A730 loop adopts a structure that is consistent with existing biochemical data and most likely reflects its conformation in the VS ribozyme prior to docking with the cleavage site internal loop. Interestingly, the A730 loop adopts an S-turn motif that is also present in loop B within the hairpin ribozyme active site. The S-turn appears necessary to expose the Watson-Crick edge of a catalytically important residue (A756) so that it can fulfill its role in catalysis. The A730 loop and the cleavage site loop of the VS ribozyme display structural similarities to internal loops found in the active site of the hairpin ribozyme. These similarities provided a rationale to build a model of the VS ribozyme active site based on the crystal structure of the hairpin ribozyme.  相似文献   

11.
Wedekind JE  McKay DB 《Biochemistry》2003,42(32):9554-9563
The leadzyme is a small ribozyme, derived from in vitro selection, which catalyzes site specific, Pb(2+)-dependent RNA cleavage. Pb(2+) is required for activity; Mg(2+) inhibits activity, while many divalent and trivalent ions enhance it. The leadzyme structure consists of an RNA duplex interrupted by a trinucleotide bulge. Here, crystal structures determined to 1.8 A resolution, both with Mg(2+) as the sole divalent counterion and with Mg(2+) and Sr(2+) (which mimics Pb(2+) with respect to binding but not catalysis), reveal the metal ion interactions with both the ground state and precatalytic conformations of the leadzyme. Mg(H(2)O)(6)(2+) ions bridge complementary strands of the duplex at multiple locations by binding tandem purines of one RNA strand in the major groove. At one site, Mg(H(2)O)(6)(2+) ligates the phosphodiester backbone of the trinucleotide bulge in the ground state conformation, but not in the precatalytic conformation, suggesting (a) Mg(2+) may inhibit leadzyme activity by stabilizing the ground state and (b) metal ions which displace Mg(2+) from this site may activate the leadzyme. Binding of Sr(2+) to the presumed catalytic Pb(2+) site in the precatalytic leadzyme induces local structural changes in a manner that would facilitate alignment of the catalytic ribose 2'-hydroxyl with the scissile bond for cleavage. These data support a model wherein binding of a catalytic ion to a precatalytic conformation of the leadzyme, in conjunction with the flexibility of the trinucleotide bulge, may facilitate structural rearrangements around the scissle phosphodiester bond favoring configurations that allow bond cleavage.  相似文献   

12.
Hampel KJ  Tinsley MM 《Biochemistry》2006,45(25):7861-7871
We have examined the tertiary structure of the ligand-activated glmS ribozyme by a combination of methods with the aim of evaluating the magnitude of RNA conformational change induced by binding of the cofactor, glucosamine 6-phosphate (GlcN6P). Hydroxyl radical footprinting of a trans-acting ribozyme complex identifies several sites of solvent protection upon incubation of the RNA in Mg(2+)-containing solutions, providing initial evidence of the tertiary fold of the ribozyme. Under these folding conditions and at GlcN6P concentrations that saturate the ligand-induced cleavage reaction, we do not observe changes to this pattern. Cross-linking with short-wave UV light of the complex yielded similar overall results. In addition, ribozyme-substrate complexes cross-linked in the absence of GlcN6P could be gel purified and then activated in the presence of ligand. One of these active cross-linked species links the base immediately 3' of the cleavage site to a highly conserved region of the ribozyme core and could be catalytically activated by ligand. Combined with recent studies that argue that GlcN6P acts as a coenzyme in the reaction, our data point to a riboswitch mechanism in which ligand binds to a prefolded active site pocket and assists in catalysis via a direct participation in the reaction chemistry, the local influence on the geometry of the active site constituents, or a combination of both mechanisms. This mode of action is different from that observed for other riboswitches characterized to date, which act by inducing secondary and tertiary structure changes.  相似文献   

13.
Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.  相似文献   

14.
The complete VS ribozyme comprises seven helical segments, connected by three three-way RNA junctions. In the presence of Mg2+ ions, cleavage occurs within the internal loop of helix I. This requires the participation of a guanine (G638) within the helix I loop, and a remote adenine (A756) within an internal loop of helix VI. Previous structural studies have suggested that helix I docks into the fold of the remaining part of the ribozyme, bringing A756 and G638 close to the scissile phosphate to allow the cleavage reaction to proceed. We show here that while either A756C or G638A individually exhibit very low cleavage activity, a mixture of the two variants leads to cleavage of the A756C RNA, but not the G638A RNA. The rate of cleavage depends on the concentration of the VS G638A RNA, as expected for a bimolecular interaction. This regaining of cleavage activity by complementation indicates that helix I of one VS RNA can interact with another VS RNA molecule to generate a functional active site in trans.  相似文献   

15.
The minimal substrate of the trans-cleaving Neurospora VS ribozyme has a stem-loop structure and interacts with the ribozyme by RNA tertiary interactions that remain only partially defined. The magnesium ion dependence of the catalytic parameters of a trans-cleaving VS-derived ribozyme were studied. The turnover number of the catalytic RNA was found to depend on the binding of at least three magnesium ions, with an apparent magnesium ion dissociation constant of 16mM, but K(M) was observed to be metal ion independent in the millimolar range. To address the role of 2'-hydroxyl groups of the VS substrate RNA in interactions with the ribozyme, 23 altered substrates, each with a single 2'-deoxyribonucleoside substitution, were synthesised and their kinetic properties in the VS ribozyme reaction were analysed. The removal of five 2'-hydroxyl groups, at positions G620, A621, U628, C629 and G630 inhibited the reaction, whereas at two sites, G623 and A639, reaction was stimulated by the modification. Substitution of G620 with a 2'-deoxynucleoside was expected to inhibit the reaction, in line with the critical role of this 2'-hydroxyl group in the transesterification reaction. Altered substrates in which a 2'-O-methyl nucleoside replaced A621, U628, C629 and G630 were prepared and characterised. Although removal of the hydroxyl group of A621 inhibited the turnover number of the ribozyme significantly, this activity was recovered upon 2'-O-methyl adenosine substitution, suggesting that the 2'-oxygen atom of this nucleoside forms an important contact within the ribozyme active site. A cluster of residues within the loop region of the substrate, were more modestly affected by 2'-deoxynucleoside substitution. In two cases, magnesium binding was impaired, suggesting that stem-loop I is a possible magnesium ion binding site.  相似文献   

16.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.  相似文献   

17.
Non-coding RNAs of complex tertiary structure are involved in numerous aspects of the replication and processing of genetic information in many organisms; however, an understanding of the complex relationship between their structural dynamics and function is only slowly emerging. The Neurospora Varkud Satellite (VS) ribozyme provides a model system to address this relationship. First, it adopts a tertiary structure assembled from common elements, a kissing loop and two three-way junctions. Second, catalytic activity of the ribozyme is essential for replication of VS RNA in vivo and can be readily assayed in vitro. Here we exploit single molecule FRET to show that the VS ribozyme exhibits previously unobserved dynamic and heterogeneous hierarchical folding into an active structure. Readily reversible kissing loop formation combined with slow cleavage of the upstream substrate helix suggests a model whereby the structural dynamics of the VS ribozyme favor cleavage of the substrate downstream of the ribozyme core instead. This preference is expected to facilitate processing of the multimeric RNA replication intermediate into circular VS RNA, which is the predominant form observed in vivo.  相似文献   

18.
Divalent metal ions are required for splicing of group I introns, but their role in maintaining the structure of the active site is still under investigation. Ribonuclease and hydroxyl radical footprinting of a small group I intron from Azoarcus pre-tRNA(Ile) showed that tertiary interactions between helical domains are stable in a variety of cations. Only Mg(2+), however, induced a conformational change in the intron core that correlates with self-splicing activity. Three metal ion binding sites in the catalytic core were identified by Tb(III)-dependent cleavage. Two of these are near bound substrates in a three-dimensional model of the ribozyme. A third metal ion site is near an A minor motif in P3. In the pre-tRNA, Tb(3+) cleavage was redirected to the 5' and 3' splice sites, consistent with metal-dependent activation of splice site phosphodiesters. The results show that many counterions induce global folding, but organization of the group I active site is specifically linked to Mg(2+) binding at a few sites.  相似文献   

19.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

20.
Hiley SL  Sood VD  Fan J  Collins RA 《The EMBO journal》2002,21(17):4691-4698
To identify nucleotides in or near the active site, we have used a circularly permuted version of the VS ribozyme capable of cleavage and ligation to incorporate a single photoactive nucleotide analog, 4-thio- uridine, immediately downstream of the scissile bond. Exposure to UV light produced two cross-linked RNAs, in which the 4-thio-uridine was cross-linked to A756 in the 730 loop of helix VI. The cross-links formed only under conditions that support catalytic activity, suggesting that they reflect functionally relevant conformations of the RNA. One of the cross-linked RNAs contains a lariat, indicative of intramolecular cross-linking in the ligated RNA; the other is a branched molecule in which the scissile phosphodiester bond is cleaved, but occupies the same site in the ribozyme-substrate complex. These are the two forms of the RNA expected to be the ground state structures on either side of the transition state. This localization of the active site is consistent with previous mutational, biochemical and biophysical data, and provides direct evidence that the cleavage site in helix I interacts with the 730 loop in helix VI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号