共查询到20条相似文献,搜索用时 15 毫秒
1.
A key role for the mRNA leader structure in translational control of ribosomal protein S1 synthesis in gamma-proteobacteria 下载免费PDF全文
The translation initiation region (TIR) of the Escherichia coli rpsA mRNA coding for ribosomal protein S1 is characterized by a remarkable efficiency in driving protein synthesis despite the absence of the canonical Shine–Dalgarno element, and by a strong and specific autogenous repression in the presence of free S1 in trans. The efficient and autoregulated E.coli rpsA TIR comprises not less than 90 nt upstream of the translation start and can be unambiguously folded into three irregular hairpins (HI, HII and HIII) separated by A/U-rich single-stranded regions (ss1 and ss2). Phylogenetic comparison revealed that this specific fold is highly conserved in the γ-subdivision of proteobacteria (but not in other subdivisions), except for the Pseudomonas group. To test phylogenetic predictions experimentally, we have generated rpsA′–′lacZ translational fusions by inserting the rpsA TIRs from various γ-proteobacteria in-frame with the E.coli chromosomal lacZ gene. Measurements of their translation efficiency and negative regulation by excess protein S1 in trans have shown that only those rpsA TIRs which share the structural features with that of E.coli can govern efficient and regulated translation. We conclude that the E.coli-like mechanism for controlling the efficiency of protein S1 synthesis evolved after divergence of Pseudomona 相似文献
2.
Parsyan A Svitkin Y Shahbazian D Gkogkas C Lasko P Merrick WC Sonenberg N 《Nature reviews. Molecular cell biology》2011,12(4):235-245
The translation initiation step in eukaryotes is highly regulated and rate-limiting. During this process, the 40S ribosomal subunit is usually recruited to the 5' terminus of the mRNA. It then migrates towards the initiation codon, where it is joined by the 60S ribosomal subunit to form the 80S initiation complex. Secondary structures in the 5' untranslated region (UTR) can impede binding and movement of the 40S ribosome. The canonical eukaryotic translation initiation factor eIF4A (also known as DDX2), together with its accessory proteins eIF4B and eIF4H, is thought to act as a helicase that unwinds secondary structures in the mRNA 5' UTR. Growing evidence suggests that other helicases are also important for translation initiation and may promote the scanning processivity of the 40S subunit, synergize with eIF4A to 'melt' secondary structures or facilitate translation of a subset of mRNAs. 相似文献
3.
Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5' untranslated leader: translational activation and mRNA processing. 总被引:2,自引:2,他引:2 下载免费PDF全文
We used transformation of yeast mitochondria and homologous gene replacement to study features of the 613-base COX3 mRNA 5' untranslated leader (5'-UTL) required for translational activation by the protein products of the nuclear genes PET54, PET122, and PET494 in vivo. Elimination of the single AUG triplet in the 5'-UTL had no detectable effect on expression, indicating that activator proteins do not work by allowing ribosomes to bypass that AUG. Deletion of the entire 5'-UTL completely prevented translation, suggesting that the activator proteins do not function by antagonizing any other negative element in the 5'-UTL. Removal of the 15 terminal bases from the 5' end of the 5'-UTL did not block activator-dependent translation. The largest internal deletion that did not interfere with translation removed 125 bases from the upstream portion of the leader. However, two large deletions that blocked translation could be reverted to activator-dependent expression by secondary changes in the remaining 5'-UTL sequences, indicating that the original deletions had not removed the translational activator target but only deformed it. Taken together, the deletion mutations and revertants define a region of 151 bases (between positions -480 and -330 relative to the start codon) containing sequences that are sufficient for translational activation when modified slightly. Suppression of the respiratory phenotypes of two 5'-UTL mutations by overexpression of PET54, PET122, and PET494 indicated functional interactions between the leader and the three activator proteins. The mature COX3 mRNA is cleaved from a precursor immediately downstream of the preceding tRNAVal in a fashion resembling mRNA processing in vertebrate mitochondria. Our results indicate that the site of this cleavage in Saccharomyces cerevisiae is determined solely by the position of the tRNA. 相似文献
4.
Temperature-sensitive cellular mutant for expression of mRNA from murine retrovirus. 总被引:2,自引:0,他引:2 下载免费PDF全文
The cellular mutant B812 isolated from a Fisher rat cell line shows temperature sensitivity of focus formation induced by various retroviruses such as recombinant murine retrovirus containing the middle T gene of polyomavirus (PyMLV), Kirsten murine sarcoma virus, Moloney murine sarcoma virus, and recombinant murine retrovirus containing the src gene of Rous sarcoma virus. B812 cells, however, show normal ability to proliferate and synthesize protein at the nonpermissive temperature, suggesting that their mutation is in a gene specifically concerned with the process of transformation by retroviruses. In this work, experiments with hybrids of mutant and wild-type cells showed that the temperature-dependent defect of this mutant was complemented by wild-type cells. To determine the step of transformation that is restricted at the nonpermissive temperature in B812, we examined the expressions of the oncogene (middle T antigen) in no. 7 (wild-type cells) and B812 cultures infected with PyMLV (the chimeric retrovirus containing the middle T gene of polyomavirus) at the permissive and nonpermissive temperatures. Middle T-associated protein kinase activity, the expression of middle T antigen, and PyMLV-specific mRNA were reduced at the nonpermissive temperature in B812 cultures infected with PyMLV. However, integration of PyMLV into the chromosomal DNA of the mutant was not affected at the nonpermissive temperature. These results suggest that B812 cells have a mutation affecting the expression of viral mRNAs from integrated proviral DNA at the nonpermissive temperature. 相似文献
5.
6.
Genetic evidence that the avian retrovirus DNA endonuclease domain of pol is necessary for viral integration. 总被引:3,自引:15,他引:3 下载免费PDF全文
We used in vitro mutagenesis in the 3' region of the avian retrovirus polymerase (pol) gene to genetically define the role of the DNA endonuclease domain. In-frame insertional mutations, which were dispersed throughout the 5' region of pp32, produced a series of five replication-deficient mutants. In contrast, a single point mutant (Ala----Pro) located 48 amino acids from the NH2 terminus of pp32 exhibited a delayed replication phenotype. Molecular analysis of this mutant demonstrated that upon infection it was capable of synthesizing both linear and circular species of unintegrated viral DNA. The levels of unintegrated viral DNA present in cells infected with the mutant virus were several times greater than wild-type levels. Quantitation of the amount of integrated viral genomes demonstrated that the mutant virus integrated viral DNA one-fifth as efficiently as wild-type virus. This single point mutation in the NH2 terminus of pp32 prevented efficient integration of viral DNA, with no apparent effect on viral DNA synthesis per se. Thus, the DNA endonuclease domain has been genetically defined as necessary for avian retrovirus integration. 相似文献
7.
The 5'' leader of a chloroplast mRNA mediates the translational requirements for two nucleus-encoded functions in Chlamydomonas reinhardtii. 总被引:7,自引:3,他引:7 下载免费PDF全文
In the green alga Chlamydomonas reinhardtii, the nuclear mutations F34 and F64 have been previously shown to abolish the synthesis of the photosystem II core polypeptide subunit P6, which is encoded by the chloroplast psbC gene. In this report the functions encoded by F34 and F64 are shown to be required for translation of the psbC mRNA, on the basis of the finding that the expression of a heterologous reporter gene fused to the psbC 5' nontranslated leader sequence requires wild-type F34 and F64 alleles in vivo. Moreover, a point mutation in the psbC 5' nontranslated leader sequence suppresses this requirement for wild-type F34 function. In vitro RNA-protein cross-linking studies reveal that chloroplast protein extracts from strains carrying the F64 mutation contain an approximately 46-kDa RNA-binding protein. The absence of the RNA-binding activity of this protein in chloroplast extracts of wild-type strains suggests that it is related to the role of the F64-encoded function for psbC mRNA translation. The binding specificity of this protein appears to be for an AU-rich RNA sequence motif. 相似文献
8.
Regulation of expression and chromosomal subunit conformation of avian retrovirus genomes. 总被引:15,自引:0,他引:15
We have investigated the copy number, chromosomal subunit conformation and regulation of expression of integrated avian retrovirus genomes. Our results indicate that there are approximately two copies of the endogenous viral genomes (RAV-O) per haploid cell genome in uninfected chick embryo fibroblasts (CEF) and red blood cells (RBC). The copy number and subunit conformation (as measured by DNAasel sensitivity) of the RAV-O genomes are independent of the level of expression of these viral DNA sequences. In cells isolated from embryos of the V+, gs-chf- and gs+chf+ phenotypes, approximately one of the two viral genomes is in a DNAase l-sensitive conformation. Upon infection with an exogenous Rous sarcoma virus (PR-RSV-C), one new viral genome is integrated per haploid CEF genome. The newly integrated RSV genome is completely sensitive to DNAase l, and the subunit conformation of the endogenous viral genomes is not altered by the integration of additional exogenous proviruses. Both the endogenous and newly integrated exogenous viral genomes are present in "nu-body" structures, and the selective sensitivity of these proviral DNA sequences to DNAase l is maintained in isolated nucleosomes. Our experiments revealing the DNAase l sensitivity of one of the two RAV-O genomes in gs-chf-CEF led us to reexamine the level of viral specific RNA in CEF of various GS genotypes. We find that GS/GS CEF contain approximately 100 copies of viral RNA per cell, gs/gs CEF contain no detectable viral RNA, and the heterozygote GS/gs CEF contain approximately 50 copies of viral specific RNA per cell. These results suggest that the GS gene controls production of RAV-O RNA sequences in CEF in a "cis" fashion. In RBCs, however, the expression of the RAV-O genome is independent of the GS gene, with both GS/GS and gs/gs RBCs containing roughly equivalent amounts of viral specific RNA. Our results suggest that the chromosomal structure of the endogenous viral genes is independent of the GS gene, and that the GS gene is cis-acting and tissue-specific. 相似文献
9.
The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader 总被引:23,自引:0,他引:23
Yaman I Fernandez J Liu H Caprara M Komar AA Koromilas AE Zhou L Snider MD Scheuner D Kaufman RJ Hatzoglou M 《Cell》2003,113(4):519-531
Transport of the essential amino acids arginine and lysine is critical for the survival of mammalian cells. The adaptive response to nutritional stress involves increased translation of the arginine/lysine transporter (cat-1) mRNA via an internal ribosome entry site (IRES) within the mRNA leader. Induction of cat-1 IRES activity requires both translation of a small upstream open reading frame (uORF) within the IRES and phosphorylation of the translation initiation factor eIF2alpha. We show here that translation of the upstream ORF unfolds an inhibitory structure in the mRNA leader, eliciting a conformational change that yields an active IRES. The IRES, whose activity is induced by amino acid starvation, is created by RNA-RNA interactions between the 5' end of the leader and downstream sequences. This study suggests that the structure of the IRES is dynamic and regulation of this RNA structure is a mechanism of translational control. 相似文献
10.
Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. 总被引:1,自引:0,他引:1
R Nivinskas N Malys V Klausa R Vaiskunaite E Gineikiene 《Journal of molecular biology》1999,288(3):291-304
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25.Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38. 相似文献
11.
12.
Wang YY Charlesworth A Byrd SM Gregerson R MacNicol MC MacNicol AM 《Developmental biology》2008,317(2):454-466
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3′ UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3′ UTR and the pericentriolar material-1 (Pcm-1) mRNA 3′ UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3′ UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3′ UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation. 相似文献
13.
14.
L Persson L Stjernborg I Holm O Heby 《Biochemical and biophysical research communications》1989,160(3):1196-1202
The expression of mammalian AdoMet decarboxylase, a key enzyme in polyamine synthesis, was shown to be regulated by polyamines at two different levels. Polyamine depletion of Ehrlich ascites tumor cells induced a marked compensatory increase in the synthesis of the enzyme, as measured by 35S-methionine pulse-labeling and immuno-precipitation. This increase in synthesis rate was counteracted by provision of spermidine, which reduced the synthesis of AdoMet decarboxylase to an undetectable level. Northern analysis revealed a nearly 2-fold increase in the amount of AdoMet decarboxylase mRNA when the putrescine and spermidine content was depleted. This increase in AdoMet decarboxylase mRNA content cannot account for the more than 5-fold increase in synthesis rate, indicating a feedback regulation also at the level of mRNA translation. 相似文献
15.
16.
Dominance in lambda S mutations and evidence for translational control 总被引:20,自引:0,他引:20
Phenotypic analysis of a collection of point mutations in the lysis gene S of bacteriophage lambda indicates that many of the S alleles exhibit at least partially dominant character, suggesting that the S gene product (gpS) must oligomerize to achieve its lethal membrane effect. Moreover, mutations found 5' to the coding sequence also show a dominant character and appear to define a site, designated sdi (structure directed initiation) where mRNA secondary structure controls the choice of initiation codons. We propose that formation of the sdi structure occludes the consensus Shine-Dalgarno sequence and results in initiation at the Met3 codon, generating a lethal 105 residue polypeptide. The model predicts that, in the absence of the sdi stem-and-loop, initiation occurs at the Met1 codon, generating a 107 residue polypeptide, which is a non-lethal inhibitor of lysis. In support of the model, alteration of the first codon was achieved using site-directed mutagenesis, resulting in an S allele that is more lethal and induces lysis significantly sooner than the wild-type. 相似文献
17.
18.
Holmes LE Campbell SG De Long SK Sachs AB Ashe MP 《Molecular and cellular biology》2004,24(7):2998-3010
The cytoplasmic fate of mRNAs is dictated by the relative activities of the intimately connected mRNA decay and translation initiation pathways. In this study, we have found that yeast strains compromised for stages downstream of deadenylation in the major mRNA decay pathway are incapable of inhibiting global translation initiation in response to stress. In the past, the paradigm of the eIF2alpha kinase-dependent amino acid starvation pathway in yeast has been used to evaluate this highly conserved stress response in all eukaryotic cells. Using a similar approach we have found that even though the mRNA decay mutants maintain high levels of general translation, they exhibit many of the hallmarks of amino acid starvation, including increased eIF2alpha phosphorylation and activated GCN4 mRNA translation. Therefore, these mutants appear translationally oblivious to decreased ternary complex abundance, and we propose that this is due to higher rates of mRNA recruitment to the 40S ribosomal subunit. 相似文献
19.
20.
Positioning ribosomes on leader mRNA for translational activation of the message of an inducible Staphylococcus aureus cat gene 总被引:1,自引:0,他引:1
Summary The expression of the chloramphenicol (Cm) —inducible Cm acetyltransferase gene (cat) of the staphylococcal plasmid pUB112 is regulated at the translational level. The leader mRNA preceding the cat coding sequence can form a stable hairpin structure, in which the cat Shine-Dalgarno sequence is masked. Previous work showed that translation of a short leader peptide terminating within the stem of the inhibitory secondary structure is required for basal Cm acetyltransferase (CAT) synthesis and its inducibility. In the present study we shortened this leader peptide by introducing ochre codons in its coding sequence and found that synthesis of the N-terminal part of the leader peptide, terminating directly 5 to the stem, is sufficient to mediate basal and inducible CAT synthesis. Amino acid substitution in this region of the leader peptide abolished inducibility. We suggest that the 5 region of the leader peptide coding sequence specifies a particularly Cm-sensitive translation that represents the Cm-sensor mechanism for cat gene induction.Part of this work was presented at the Fourth International Conference on Genetics and Biotechnology of Bacilli, San Diego, USA, 1987 and at the Herbsttagung der Gesellschaft für Biologische Chemie, Erlangen, Federal Republic of Germany, 1987 相似文献