首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao YL  Xu Y  Gu JC  Wang ZQ 《应用生态学报》2011,22(10):2546-2552
以23年生黄波罗人工林为研究对象,测定黄波罗1~5级根的全碳(C)、全氮(N)、非结构性C(TNC)和可溶性N浓度的季节变化,研究全C、全N、TNC及可溶性N浓度的相关性.结果表明:在黄波罗前5级根中,TNC浓度占全C浓度的49%,可溶性N浓度占全N浓度的26%;在生长季内,TNC浓度占全C浓度比例从1级根的42%增加到5级根的52%,而可溶性N占全N的比例从28%下降到21%;春季细根全C浓度最低而全N浓度最高,TNC和可溶性N浓度均是夏季最低.前5级根全C浓度增加降低了TNC和可溶性N浓度,全N浓度增加显著降低了TNC浓度,提高了可溶性N浓度.随着根序升高,全N和全C浓度与TNC浓度的相关性增强,而与可溶性N浓度相关性减弱.细根TNC和可溶性N浓度与全C和全N浓度关系密切.  相似文献   

2.
Kabeya D  Sakai S 《Annals of botany》2005,96(3):479-488
BACKGROUND AND AIMS: Plants need some kind of stored resources to resprout after shoot destruction. The aim of this study was to determine the relative importance of carbohydrate and nitrogen (N) storage levels for their ability to resprout. METHODS: A shoot clipping experiment was conducted on Quercus crispula seedlings, which were grown in a factorial experimental design, with two light levels (40% and 3% of full light) and three nutrient concentrations (low, medium and high). KEY RESULTS: At the time of shoot clipping (the end of spring leaf expansion), seedlings exposed to 40% light had an average total non-structural carbohydrate (TNC) concentration of 17.0% in their roots compared with 4.9% in the roots of seedlings exposed to 3% light, and the average amount of TNC (TNC pools) in the roots was 203.8 mg and 20.0 mg at 40% light and 3% light, respectively. In contrast, root N concentration averaged 2.3% in the 3% light treatment compared with 1.2% in the 40% light treatment, and it increased with successive rises in nutrient concentrations at both light levels. Regardless of the nutrient status, at the 40% light level >80% of the seedlings resprouted after shoot clipping. Few seedlings, however, resprouted at the 3% light level, particularly in the medium- and high-nutrient treatments. Furthermore, both root TNC concentrations and TNC pools decreased after resprouting, but the amount of root N remained constant. CONCLUSIONS: These results suggest that carbohydrate storage has a stronger influence on resprouting in Quercus crispula than N storage. However, the size of the resprouting shoot was positively correlated with the amount of both N and TNC in roots. The level of N storage is, therefore, also important for the growth of resprouting shoots.  相似文献   

3.
掌握树木根部碳存储规律对于准确估算碳在地上器官与地下器官间的分配非常必要。本研究以栓皮栎(Quercus variabilis Blume)为对象,在2016年5月—2017年6月,通过周期性采样方法(共计采样14次),测定了高、低海拔(970和650 m)栓皮栎粗根非结构性碳水化合物(non-structural carbohydrates,NSC)及其组分(可溶性糖和淀粉)含量的年内动态变化。结果表明:除高海拔淀粉外,栓皮栎粗根NSC及其组分含量均随季节变化差异显著(P<0.05)。粗根NSC含量呈现生长季初期(3月)下降,非生长季(2月)达到最高值的变化趋势;栓皮栎粗根NSC组成以淀粉为主,高、低海拔淀粉含量占比分别为61%和71%,这可能与栓皮栎适应区域环境特征有关。不同海拔间,栓皮栎粗根NSC及其组分含量的差异出现在生长季初期(3月,P<0.05)。高海拔(10.26%)栓皮栎粗根NSC含量小于低海拔(13.96%)。栓皮栎粗根NSC含量存在明显的季节波动,粗根在生长季末及非生长季积累的NSC对下一年树木生长启动非常重要,研究结果有助于理解树木地下器官对树木生长的碳供应机制。  相似文献   

4.
The seasonal dynamics of non-structural carbohydrates in the woody organs of two co-existing mediterranean sub-shrubs were analyzed. The two species show different leaf phenology during summer: Linum suffruticosum, maintains many of its green leaves, while Lepidium subulatum sheds most of its leaves. These different leaf phenologies are related to different strategies with regard to summer stress. The maintenance of leaves in Linum is related to its stress tolerance while Lepidium avoids stress by shedding its leaves. The main objectives were to: (1) determine the differences in the seasonal dynamics of non-structural carbohydrates among the main woody organs of both species; (2) verify if differences in the leaf phenology, and hence in the strategy with regard to summer drought, lead to different seasonal patterns of carbohydrate storage and use between the two species; (3) compare the seasonal dynamics of carbohydrates of the two studied sub-shrubs with those of mediterranean trees and shrubs previously reported in the literature. The concentration of soluble sugars (SS), starch and total non-structural carbohydrates (TNC) were assessed monthly, over 17 months, in the main roots, stems and the transition zone between root and shoot systems of both species. Starch storage capacity and SS, starch and TNC pools were calculated. The seasonal pattern of carbohydrate accumulation was similar among the woody organs analyzed, but it differed with those reported for mediterranean trees and shrubs. The two species showed different pools and seasonal patterns of non-structural carbohydrate concentrations in its woody organ, which corresponded to their different extent of leaf shedding. The stress-avoider Lepidium accumulated starch during spring shoot growth as a carbon store for summer respiration and had low pools of SS, whereas the stress-tolerant Linum increased SS during summer drought to maintain photosynthetic activity during summer and had low starch pools and storage capacity. However, irrespective of their different leaf shedding patterns, both species had a similar relative variation of their TNC concentration, which contrasts with previous results on deciduous and evergreen woody species.  相似文献   

5.
Guo DL  Mitchell RJ  Hendricks JJ 《Oecologia》2004,140(3):450-457
Fine roots are a key component of carbon (C) flow and nitrogen (N) cycling in forest ecosystems. However, the complexity and heterogeneity of the fine root branching system have hampered the assessment and prediction of C and N dynamics at ecosystem scales. We examined how root morphology, biomass, and chemistry differed with root branch orders (1–5 with root tips classified as first order roots) and how different root orders responded to increased C sink strength (via N fertilization) and reduced carbon source strength (via canopy scorching) in a longleaf pine (Pinus palustris L.) ecosystem. With increasing root order, the diameter and length of individual roots increased, whereas the specific root length decreased. Total root biomass on an areal basis was similar among the first four orders but increased for the fifth order roots. Consequently, total root length and total root surface area decreased systematically with increasing root order. Fine root N and lignin concentrations decreased, while total non-structural carbohydrate (TNC) and cellulose concentrations increased with increasing root order. N addition and canopy disturbance did not alter root morphology, but they did influence root chemistry. N fertilization increased fine root N concentration and content per unit area in all five orders, while canopy scorching decreased root N concentration. Moreover, TNC concentration and content in fifth order roots were also reduced by canopy scorching. Our results indicate that the small, fragile, and more easily overlooked first and second order roots may be disproportionately important in ecosystem scale C and N fluxes due to their large proportions of fine root biomass, high N concentrations, relatively short lifespans, and potentially high decomposition rates.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

7.
The radial, axial and inter-specific variations in concentrations and contents of non-structural carbohydrates (NSC) in stems were investigated for 12 Chinese temperate tree species. These species had contrasting leaf phenology (evergreen and deciduous) and wood types (non-, ring- and diffuse-porous wood). For each species, we sampled bark (periderm and phloem), outer wood (light-colored) and inner wood (dark-colored) at four heights along the stem (stump, breast height, crown base and mid-crown). Concentrations of total NSC (TNC, sum of sugars and starch), sugars and starch were much higher in bark than those in wood. On average, contents of sugars and starch accounted for 48 and 52 % of the TNC, respectively, and contents of TNC in bark, outer wood, and inner wood accounted for 34, 38, and 28 % of the stem total, respectively. Bark was the major pool of sugars in the stem (accounting for 50 % of the stem total on average), while outer wood was the major pool of starch (41 %). The concentration of sugars varied axially for all the conifers but did not for the broadleaved species. Mean concentrations of TNC, sugars and starch in stem varied by more than twofold among the species. However, there were no significant differences in these values for the species groups with different leaf phenology or wood types. Ignoring the radial, axial and inter-specific variations in NSC in stem would introduce large bias in estimating NSC storage at tree or ecosystem levels.  相似文献   

8.
施肥对日本落叶松不同根序细根养分浓度的影响   总被引:2,自引:0,他引:2  
以辽宁东部山区16年生日本落叶松人工林为对象,探讨施肥对落叶松1~5级不同根序等级细根养分浓度的变化.结果表明:不同根序等级细根全碳浓度差异不显著,施肥对各级根序全碳浓度没有显著影响;在前5级根序中,1级根非结构性碳水化合物(TNC)浓度最低,N和P浓度最高;而5级根TNC浓度最高,N和P浓度最低.TNC浓度随着根序增加而升高,N和P浓度则相应下降.施肥仅对1级根组织中N和P浓度有显著影响;不同根序根组织中C/N/P具有明显差异,1级根平均C/N/P为423∶16∶1,5级根为726∶16∶1,随着根序增加,C在3种元素中的比例显著增加,而N的比例变化不大.施N肥并没有改变C的比例;但施P肥或施N+P肥均降低了前3级根(0~10 cm)或前2级根(10~20 cm)C和N在3种元素中的比例.  相似文献   

9.
环境变化对兴安落叶松氮磷化学计量特征的影响   总被引:8,自引:0,他引:8  
平川  王传宽  全先奎 《生态学报》2014,34(8):1965-1974
兴安落叶松(Larix gmelinii)为我国北方人工林优势树种,采集地理和气候差异明显的6个种源种子,在分布区南界的均一立地条件下进行播种,形成了32a林分。采集新老枝、新老叶和不同径级的根样品,测定其氮(N)和磷(P)浓度,比较种源间差异以及其随月份的变化和各器官NP元素之间的相关性。结果表明:老枝叶(P0.05)、1—2 mm根(P0.01)和2—5 mm根(P0.05)N浓度在种源间差异显著,变化范围分别为21.1—24.2 mg/g、5.9—7.8 mg/g和4.7—6.5 mg/g。P浓度在老枝叶(P0.05)和新枝叶(P0.05)中都表现出种源间的差异显著,变化范围分别为4.5—5.8 mg/g和4.5—6.5 mg/g。根系和枝叶的N/P皆存在种源间显著性差异(P0.05)。叶片和根系的NP浓度的月份变化呈现先减小再增加的趋势,而新枝则呈现增加-减小-增加的不同趋势。新老枝、新老叶和根系的N和P浓度之间显著相关;新老枝、新老叶和根系之间的N浓度显著相关。不同种源兴安落叶松因对不同环境的长期适应而产生NP化学计量特征的遗传差异。  相似文献   

10.
Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs) and the effects on the degradation of chlorophyll, nitrogen (N) concentration in leaves and culms, total non-structural carbohydrate (TNC) in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies), but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and species composition in communities.  相似文献   

11.
施肥对日本落叶松不同根序细根养分浓度的影响   总被引:11,自引:0,他引:11  
以辽宁东部山区16年生日本落叶松人工林为对象,探讨施肥对落叶松1~5级不同根序等级细根养分浓度的变化.结果表明:不同根序等级细根全碳浓度差异不显著,施肥对各级根序全碳浓度没有显著影响;在前5级根序中,1级根非结构性碳水化合物(TNC)浓度最低,N和P浓度最高;而5级根TNC浓度最高,N和P浓度最低.TNC浓度随着根序增加而升高,N和P浓度则相应下降.施肥仅对1级根组织中N和P浓度有显著影响;不同根序根组织中C/N/P具有明显差异,1级根平均C/N/P为423∶16∶1,5级根为726∶16∶1,随着根序增加,C在3种元素中的比例显著增加,而N的比例变化不大.施N肥并没有改变C的比例;但施P肥或施N+P肥均降低了前3级根(0~10 cm)或前2级根(10~20 cm)C和N在3种元素中的比例.  相似文献   

12.
Two coniferous tree species of contrasting sapwood width (Pinus ponderosa L., ponderosa pine and Pseudotsuga menziesii Mirb., Douglas-fir) were compared to determine whether bole respiratory potential was correlated with available storage space in ray parenchyma cells and/or respiratory substrate concentration of tissues (total nitrogen content, N; and total non-structural carbohydrate content, TNC). An increment core-based, laboratory method under controlled temperature was used to measure tissue-level respiration (termed respiratory potential) from multiple positions in mature boles (>100-years-old). The most significant tissue-level differences that occurred were that N and TNC were two to six times higher for inner bark than sapwood, TNC was about two times higher in ponderosa pine than Douglas-fir and there was significant seasonal variation in TNC. Ray cell abundance was not correlated with sapwood respiratory potential, whereas N and TNC often were, implying that respiratory potential tended to be more limited by substrate than storage space. When scaled from cores to whole boles (excluding branches), potential net CO2 efflux correlated positively with live bole volume (inner bark plus sapwood), live bole ray volume, N mass, and TNC mass (adjusted R2 > or =0.4). This relationship did not differ between species for N mass, but did for live bole volume, live bole ray volume, and TNC mass. Therefore, N mass appeared to be a good predictor of bole respiratory potential. The differences in net CO2 efflux between the species were largely explained by the species' relative amounts of whole-bole storage space or substrate mass. For example, ponderosa pine's inner bark was thinner than Douglas-fir's, which had the greater concentration of ray cells and TNC compared with the sapwood. This resulted in ponderosa pine boles having 30-60% less ray volume and 10-30% less TNC mass, and caused ponderosa pine net CO2 efflux/ray volume and net CO2 efflux/TNC mass to be 20-50% higher than Douglas-fir. In addition, because inner bark respiratory potential was 2-25 times higher than that of sapwood, ponderosa pine's thinner inner bark and deeper sapwood (relative to Douglas-fir) caused its bole net CO2 efflux/live bole volume to be 20-25% lower than that of similarly-sized Douglas-fir trees.  相似文献   

13.
For understory saplings to exploit canopy gaps successfully,carbon gain must increase in the gap environment. We predictedthat total biomass of shade-grown red oak saplings would increaseafter exposure to a late-season canopy gap, and that increasedwater and nutrient demand within the canopy gap would drivechanges in the allocation of this carbon. Shade-grown red oaksaplings acclimated to gaps by increasing biomass during theseason of gap formation and increasing the potential for carbongain in the following summer. Within-season carbon gain didnot result from greater production of leaf area, so it mostlikely arose from higher photosynthetic rates of existing shade-developedfoliage, which may be linked to accumulation of leaf nitrogen.During the season of gap formation, shade-gap plants increasedallocation to storage of total non-structural carbohydrates(TNC), and to root growth. The increase in TNC storage suggeststhat shade-developed saplings exposed to gaps were also primedfor fast growth and carbon gain in the following summer. Theincrease in root growth suggests that higher nutrient and waterdemand drove allocation shifts to enhance the capacity for nutrientand water uptake in the gap. Plant hydraulic conductivity (Ka)of shade-grown plants was limited upon exposure to the gap,possibly because of embolism formation resulting from the abruptincrease in water demand. Greater water potential gradientscompensated for limitations to Ka, allowing saplings to maintainhigh transpiration rates, suggesting that actual water uptakeof shade-gap plants was unaffected by gap exposure. Acclimation; canopy gaps; carbon allocation; hydraulic conductivity; nitrogen allocation; non-structural carbohydrates;Quercus rubra L.; red oak; stomatal conductance; transpiration; water-relations  相似文献   

14.
水曲柳和落叶松人工林乔木层碳、氮储量及分配   总被引:8,自引:1,他引:7  
采用树木解析和连续土芯法,估测了20年生水曲柳和落叶松人工林乔木层各部分生物量和生产量,以及两种林分各部分的碳、氮含量及储量.结果表明:水曲柳和落叶松乔木林生物量分别为6815.10和9295.95 g·m-2;两树种树干生物量占总生物量的比例均最高,分别为57.32%和58.01%;细根生物量最低,分别为2.67%和1.80%.水曲柳和落叶松的年生产量分别为1618.16和2102.45 g·m-2·a-1,其中树干年生产量最高,分别占总生物量的39.34%和46.70%;细根的年生产量较低,分别占总生物量的12.06%和5.25%.水曲柳各器官碳含量低于落叶松,氮含量则高于落叶松;水曲柳林碳储量低于落叶松,而两树种氮储量差别不大.水曲柳分配到地上部分的生物量、生产量以及碳、氮比例均小于落叶松,反映了落叶松在构建地上部分相对于水曲柳的高效性;由于树种之间以及同一树种不同器官之间的碳、氮含量差别显著,精确估计森林碳、氮储量时应分树种和器官进行测定.  相似文献   

15.
Nitrogen fertilisation is a regular practice in orchards. Its effect on tree development, N and C acquisition and allocation were evaluated simultaneously, while coupling on the same trees in situ measurements of N uptake and shoot development and destructive determinations of organ composition in N and Total Non structural Carbohydrates (TNC). An hydroponic set-up was designed that could grow young peach trees at constant NO3 concentration while measuring N uptake. Forty-eight trees were raised outdoors under excessive N supply. Between October 2 and December 7, half of them were then N-limited to reduce N uptake by 75%. Organ N concentrations remained stable in the controls but were halved in N-limited trees. Growth (390 vs. 353 g DW tree−1) was less affected by the treatment than N uptake (10.6 vs. 2.7 g N tree−1). Growth was affected only in terms of axillary bud development, which was restricted to the median and upper crown parts. The number of buds which transformed into elongating axes (44 vs. 84 tree−1) was halved, thus reducing leaf area by one-third (10,464 vs. 15,568 cm2). Tree TNC content was not impacted. The difference in C acquisition likely balanced the C costs of N uptake. In N-limited trees, more TNC was stored as starch (73 vs. 56%), and the allocation patterns of TNC and N were altered in favour of the roots. Our results provide deeper insights into the tree integrated response to autumnal N fertilisation, focusing on an alteration of the balance between storage and growth.  相似文献   

16.
A comprehensive understanding of Ca cycling in an ecosystem is desirable because of the role of this element in tree mineral nutrition and its status as a major base cation on the soil exchange complex. The determination of the origin of Ca in forests is particularly indicated in regard of important changes linked to acid inputs and intensive logging. Natural strontium isotopes are increasingly used as tracers of Ca in forest ecosystems for qualitative and quantitative assessments. Nevertheless this method is limited to relatively simple systems with two sources of nutrients. Some recent studies coupled Sr/Ca or Sr/Ba ratios to Sr isotopic measurements in order to solve more complex systems. Such method has however associated with it some uncertainties: this approach assumed that Ca, Sr and Ba behave similarly throughout the ecosystem and does not take into account the Ca biopurification processes occurring in some tree’s organs which can alter element ratio. The present work focuses on two deciduous species covering large areas in Europe: European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.). In order to test the similarity of behaviour between Ca, Sr and Ba, their concentrations were measured extensively in the major compartments of two forest ecosystems. In parallel, the discrimination process inside tree organs was studied in 23 stands for beech and 10 stands for oak. We found that Sr and Ca behave similarly in all soil and tree compartments. By contrast, Ba and Ca appear to have contrasting behaviours, especially in streams, soil solution and soil exchange complex (no correlations between element concentrations). Sr/Ba and Ba/Ca ratios must therefore be used with care as tracer of Ca. The Ca biopurification is absent in roots and slight in bole wood but is large in bark, twigs and leaves. The discrimination factors (DF) between wood and leaves are characteristic of the two species studied and do not change significantly as a function of the soil Ca status (acidic or calcareous soils). Therefore, strontium–calcium DF can be used as a correction factor of the Sr/Ca ratio of leaves when this ratio is used in connection with Sr isotopic ratios. This correction allows to solve systems of tree nutrition with more than two sources of Ca.  相似文献   

17.
Atmospheric nitrogen deposition poses a major threat to global biodiversity. Tropical epiphytic plants are especially at risk given their reliance on atmospheric sources of nutrients. The leaf, pseudobulb, and root carbon and nitrogen content, C:N ratio, as well as the nitrogen isotopic composition were studied for individuals of Laelia speciosa from a city and from an oak forest in Mexico. The nitrogen content of leaves was similar between the city and the oak forest, reaching 1.3 ± 0.2 % (dry mass). The δ15N of leaves, pseudobulbs, and roots reached 5.6 ± 0.2 ‰ in the city, values found in sites exposed to industrial and vehicular activities. The δ15N for plant from the oak forest amounted to –3.1 ± 0.3 ‰, which is similar to values measured from sites with low industrial activities. Some orchids such as Laelia speciosa produce a single pseudobulb per year, i.e., a water and nutrient storage organ, so the interannual nitrogen deposition was studied by considering the ten most recent pseudobulbs for plants from either site formed between 2003 and 2012. The C:N ratio of the ten most recent pseudobulbs from the oak forest, as well as that of the pseudobulbs formed before 2010 for plants in the city were indistinguishable from each other, averaging 132.4 ± 6.5, while it was lower for the two most recent pseudobulbs in the city. The δ15N values of pseudobulbs from the oak forest averaged ?4.4 ± 0.1 ‰ for the entire series. The δ15N ranged from 0.1 ± 1.6 ‰ for the oldest pseudobulb to 4.7 ± 0.2 ‰ for the pseudobulb formed in the city from 2008 onwards. Isotopic analysis and the C:N ratio for L. speciosa revealed that rates of nitrogen deposition were higher in the city than in the forest. The δ15N values of series of pseudobulbs showed that it is possible to track nitrogen deposition over multiple years.  相似文献   

18.
《植物生态学报》2017,41(4):461
Aims The objectives were to clarify the responses of C, N and P stoichiometry of Vitex rotundifolia to desertification, and determine the C, N and P stoichiometric relationships among the organs.
Methods In this study, different organs (e.g. flowers, leaves, twigs, creeping stems, fine roots) of V. rotundifolia were sampled along a desertification gradient in a typical Poyang Lak sandy hill. Subsequently, C, N and P contents of various organs were measured.
Important findings The results showed nutrient contents in different organs ranged from 386.28 to 449.47 mg·g-1 for carbon, 11.40 to 25.37 mg·g-1 for nitrogen and 0.89 to 1.54 mg·g-1 for phosphorus, respectively. C, N and P contents differed significantly among the five organs. The maximum N and P content were found in flowers, whereas the minimums were observed in twigs and creping stems. Moreover, desertification intensity only significantly affected C, N and C:P. C:N and N:P ratios maintained relatively stable. Except N:P, the other nutrient elements and associated stoichiometry significantly differed among the organs. Hence, organs, rather than desertification intensity mainly controlled the C, N and P content and their stoichiometry variability. Although there was a positive correlation between mass-based N content (Nmass) and P content (Pmass) across the three desertification zones, the Nmass-Pmass relationship in V. rotundifolia did not shift. Irrespective desertification intensity and organs, N:P stoichiometry of V. rotundifolia was well constrained. In addition, significant correlations of C, N and P contents among organs were mainly found in the above-ground parts, especially between twigs and creeping stems.  相似文献   

19.
The fate of15N labeled nitrogen applied to mature citrus trees   总被引:1,自引:0,他引:1  
Summary The efficiency and balance of nitrogen from one year's application was studied in a long-term fertigation experiment. Enriched nitrogen fertilizer, K15NO3, was applied to a 22-year-old Shamouti orange tree with a history of high N applications (N3) and to an N-starved tree (N1). The distribution of N in the different parts of the trees and in the soil was determined after the experimental trees were excavated. Similar total recovery of the labeled fertilizer N was found in the trees and soil in both treatments (N1−61.7% N3−56%). However, the distribution between tree and soil was different. The amount of recovered residual fertilizer in the soil was much larger in the N3 treatment than in N1. The highest percentage of fertilizer N was found in the new organs,i.e. fruits, twigs and leaves. The roots and branches took up only 6–14% from the labeled fertilizer. Only 20.9% of the leaf N and 23.4% of the fruit N in the N3 tree originated in the labeled fertilizer, indicating translocation of N from older parts of the tree to new growth. Evidence was found of storage of N in the wooded branches, while the roots contained a surprisingly small part of labeled fertilizer. Contribution 1599E.  相似文献   

20.
We have measured the uptake capacity of nitrogen (N) and potassium (K) from different soil depths by injecting 15N and caesium (Cs; as an analogue to K) at 5 and 50 cm soil depth and analysing the recovery of these markers in foliage and buds. The study was performed in monocultures of 40-year-old pedunculate oak (Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies (L.) Karst.) located at an experimental site in Palsgård, Denmark. The markers were injected as a solution through plastic tubes around 20 trees of each species at either 5 or 50 cm soil depth in June 2003. After 65 days foliage and buds were harvested and the concentrations of 15N and Cs analysed. The recovery of 15N in the foliage and buds tended to be higher from 5 than 50 cm soil depth in oak whereas they where similar in spruce and beech after compensation for differences in immobilization of 15N in the soil. In oak more Cs was recovered from 5 than from 50 cm soil depth whereas in beech and spruce no difference could be detected. Out of the three investigated tree species, oak was found to have the lowest capacity to take up Cs at 50 cm soil depth compared to 5 cm soil depth also after compensating for differences in discrimination against Cs by the roots. The uptake capacity from 50 cm soil depth compared with 5 cm was higher than expected from the root distribution except for K in oak, which can probably be explained by a considerable overlap of the uptake zones around the roots and mycorrhizal hyphae in the topsoil. The study also shows that fine roots at different soil depths with different physiological properties can influence the nutrient uptake of trees. Estimates of fine root distribution alone may thus not reflect the nutrient uptake capacity of trees with sufficient accuracy. Our study shows that deep-rooted trees such as oak may have lower nutrient uptake capacity at deeper soil layers than more shallow-rooted trees such as spruce, as we found no evidence that deep-rooted trees obtained proportionally more nutrients from deeper soil layers. This has implications for models of nutrient cycling in forest ecosystems that use the distribution of roots as the sole criterion for predicting uptake of nutrients from different soil depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号