首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The refolding of denatured rabbit muscle pyruvate kinase.   总被引:3,自引:3,他引:0       下载免费PDF全文
The refolding of rabbit muscle pyruvate kinase after denaturation by guanidine hydrochloride was studied. On dilution of the denaturing agent, enzyme activity is only partially regained. The extent of regain of activity is dependent on protein concentration, showing a marked decrease at higher concentrations. The failure to regain complete activity appears to be related to the formation of inactive aggregates, which can be separated from active enzyme by gel filtration. Insoluble aggregates can be partially re-activated after solubilization in guanidine hydrochloride. Changes in the circular-dichroism and fluorescence spectra during refolding suggest that a partially folded, inactive species is formed rapidly; this differs from native enzyme in being more susceptible to proteolysis by trypsin.  相似文献   

2.
The detection of kinetic intermediate(s) during refolding of rhodanese   总被引:1,自引:0,他引:1  
Recent studies showed that the enzyme rhodanese could be reversibly unfolded in guanidinium chloride (GdmCl) if aggregation and oxidation were minimized. Further, these equilibrium studies suggested the presence of intermediate(s) during refolding (Tandon, S., and Horowitz, P. (1989) J. Biol. Chem. 264, 9859-9866). The present work shows that native and refolded enzymes are very similar in structural and functional characteristics. Kinetics of denaturation/renaturation were used to detect the folding intermediate(s). The shift in fluorescence wavelength maximum was used to monitor the structural changes during the process. First order plots of the structural changes during unfolding and refolding show nonlinear curves. The refolding occurs in at least two phases. The first phase is very fast (t1/2 much less than 30 s) and accounts for the partial regain in the structure but not in the activity. The second phase is slow (t1/2 = 2.9 h) during which the enzyme fully regains its structure along with the activity. The fractional renaturation of rhodanese due to the fast phase, monitored in various concentrations of GdmCl, describes a transition centered at 3.5 M GdmCl which is very similar to the higher of the two transitions observed in the reversible refolding. All of these findings support the presence of detectable intermediate(s) during folding of rhodanese.  相似文献   

3.
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed.  相似文献   

4.
The influence of chemical mutation featuring the selective conversion of asparagine or glutamine to aspartic or glutamic acid, respectively, on the kinetics of refolding of reduced RNase has been studied. The monodeamidated derivatives of RNase A, viz. RNase Aa1a, Aa1b, and Aa1c having their deamidations in the region 67-74, were found to regain nearly their original enzymatic activity. However, a marked difference in the kinetics of refolding is seen, the order of regain of enzymic activity being RNase A greater than Aa1c congruent to Aa1a greater than Aa1b. The similarities in the distinct elution positions on Amberlite XE-64, gel electrophoretic mobilities, and u.v. spectra of reoxidized and native derivatives indicated that the native structures are formed. The slower rate of reappearance of enzymic activity in the case of the monodeamidated derivatives appears to result from altered interactions in the early stages of refolding. The roles of some amino acid residues of the 67-74 region in the pathway of refolding of RNase A are discussed.  相似文献   

5.
Heat-stable pullulanase from Bacillus acidopullulyticus was characterized with respect to its stability against thermal and chemical denaturation and its reactivation after complete chemical unfolding. The enzyme was quite thermostable and retained 55% of activity after heating at 60°C for 30 min at pH 5.5. At pH 6.0, only 9% residual activity was observed. The addition of sucrose, polyols, and Na2SO4 strongly stabilized the enzyme against thermal inactivation. The processes of chemical unfolding by guanidinium chloride (GdmCl) and refolding were studied by enzymological and spectroscopic criteria. B. acidopullulyticus pullulanase was very sensitive to GdmCl denaturation and had a transition midpoint at 1.2 M GdmCl. Reactivation after complete unfolding in 5 M GdmCl was initiated by dilution of the unfolding mixture; 67% reactivation was observed under standard conditions. The influence of some chemical and physical parameters (pH, chemical agents, temperature, and unfolding and refolding time) on refolding was investigated. Of the additives tested to assist reactivation, only bovine serum albumin (BSA) increased the yield of activity to 80%. The full regain of structure and activity was proven by comparing the enzymological, physicochemical, and spectroscopic properties of the native and refolded pullulanase. Received: June 22, 1998 / Accepted: December 11, 1998  相似文献   

6.
The early part of the reaction of refolding of reduced ribonuclease A has been studied using the reappearance of enzymatic activity as an index of refolding. It is found that a low level of activity, about 0.04% of that of native enzyme, can be measured early after refolding has been initiated. This low level of activity is apparently not due to a contaminant or to incompletely reduced RNAase A molecules, but rather seems to be a property of the bulk of the reduced protein. Furthermore, this early activity is sensitive to the reaction with N-ethyl-maleimide, showing that it is due to completely or partially reduced molecules. The amount of protein responsible for this early activity represents a small fraction of the total reduced RNAase A, and possesses binding properties similar to those of the native enzyme towards a substrate, 2′, 3′ CMP and an inhibitor, 2′ CMP. These results are interpreted as evidence for the existence of an equilibrium between native and unfolded conformations in reduced RNAase A, and are discussed with respect to the protein folding mechanism.  相似文献   

7.
Succinyl-coenzyme A synthetase of Escherichia coli has an alpha 2 beta 2 subunit structure. By measuring reconstituted enzyme activity present after addition of purified alpha or beta subunits to cell extracts followed by refolding, we have shown that extracts contain no significant excess of either subunit species. This equivalence suggests that the expression of the respective structural genes for the subunits is coordinately controlled. The presence of cell extract does not affect the rate or extent of reassembly of the subunits, pointing to a high degree of specificity of mutual recognition by the refolding subunits. In the course of these experiments, we have detected the presence in cell extracts of a low-molecular-weight factor that specifically inactivates unfolded alpha or beta subunits or prevents their reassembly into catalytically active enzyme. Under conditions where the subunits are completely inactivated, the factor has no detectable effect on native or refolded tetrameric enzyme, suggesting that the factor may react only with unfolded protein.  相似文献   

8.
The refolding of urea-denatured ribonuclease A was measured at 0.31-3.1 mol . l-1 urea in the presence of various concentrations of peptidyl-prolyl cis-trans isomerase isolated from pig kidney. The rate of the slow CT-phase in the refolding reaction was found to be sensitive to this enzyme. A rate enhancement proportional to the isomerase activity has been observed. The activity of the enzyme was assayed with Glt-Ala-Ala-Pro-Phe-4-nitroanilide. The catalytic activity of the isomerase against unfolded ribonuclease is suppressed after preincubation of the enzyme with 0.001 mol . l-1 Cu2+, 0.01 mol . l-1 H+ and by heat inactivation. The results indicate the involvement of the cis/trans interconversion of proline peptide bonds during the refolding of ribonuclease A.  相似文献   

9.
The thermal denaturation of the dimeric enzyme triosephosphate isomerase (TIM) from Saccharomyces cerevisiae was studied by spectroscopic and calorimetric methods. At low protein concentration the structural transition proved to be reversible in thermal scannings conducted at a rate greater than 1.0 degrees C min(-1). Under these conditions, however, the denaturation-renaturation cycle exhibited marked hysteresis. The use of lower scanning rates lead to pronounced irreversibility. Kinetic studies indicated that denaturation of the enzyme likely consists of an initial first-order reaction that forms thermally unfolded (U) TIM, followed by irreversibility-inducing reactions which are probably linked to aggregation of the unfolded protein. As judged from CD measurements, U possesses residual secondary structure but lacks most of the tertiary interactions present in native TIM. Furthermore, the large increment in heat capacity upon denaturation suggests that extensive exposure of surface area occurs when U is formed. Above 63 degrees C, reactions leading to irreversibility were much slower than the unfolding process; as a result, U was sufficiently long-lived as to allow an investigation of its refolding kinetics. We found that U transforms into nativelike TIM through a second-order reaction in which association is coupled to the regain of secondary structure. The rate constants for unfolding and refolding of TIM displayed temperature dependences resembling those reported for monomeric proteins but with considerably larger activation enthalpies. Such large temperature dependences seem to be determinant for the occurrence of kinetically controlled transitions and thus constitute a simple explanation for the hysteresis observed in thermal scannings.  相似文献   

10.
Protein refolding is currently a fundamental problem in biophysics and molecular biology. We have studied the refolding process of frutalin, a tetrameric lectin that presents structural homology with jacalin but shows a more marked biological activity. The initial state in our refolding puzzle was that proteins were unfolded after thermal denaturation or denaturation induced by guanidine hydrochloride, and under both conditions, frutalin was refolded. The denaturation curves, measured by fluorescence emission, gave values of conformational stability of 17.12 kJ.mol-1 and 12.34 kJ.mol-1, in the presence and absence of d-galactose, respectively. Native, unfolded, refolded frutalin and a distinct molecular form denoted misfolded, were separated by size-exclusion chromatography (SEC) on Superdex 75. The native and unfolded samples together with the fractions separated by SEC were also analyzed for heamagglutination activity by CD and fluorescence spectroscopy. The secondary structure content of refolded frutalin estimated from the CD spectra was found to be close to that of the native molecule. All the results obtained confirmed the successful refolding of the protein and suggested a nucleation-condensation mechanism, whereby the sugar-binding site acts as a nucleus to initiate the refolding process. The refolded monomers, after adopting their native three-dimensional structures, spontaneously assemble to form tetramers.  相似文献   

11.
Antiperoxidase antibodies enhance refolding of horseradish peroxidase   总被引:1,自引:0,他引:1  
The effect of monoclonal antibodies on protein folding was studied using horseradish peroxidase refolding from guanidine hydrochloride as a model process. Among the five antiperoxidase clones tested, one was found to increase the yield of catalytically active peroxidase after guanidine treatment. The same clone also increased the activity of the native peroxidase by a factor of 2-2.5. While peroxidase refolding under standard conditions resulted in the recovery of only 7-8% of the initial catalytic activity, antibody-assisted refolding increased the yield to 50-100% (or 20-40% from the activity of native enzyme with antibodies). Kinetics of autorefolding and antibody-assisted refolding differed significantly. In the course of autorefolding the catalytic activity was recovered within the first 2.5 min and did not change further within a 2.5- to 60-min interval, whereas in the course of antibody-assisted refolding maximal catalytic activity was attained only in 60 min. The yield of active peroxidase for the antibody-assisted refolding depended linearly on the antibody concentration. The observed effect was strongly specific. Other antiperoxidase clones tested as well as nonspecific antithyroglobulin antibody affected neither kinetics, no the yield of peroxidase refolding.  相似文献   

12.
Protein refolding is currently a fundamental problem in biophysics and molecular biology. We have studied the refolding process of frutalin, a tetrameric lectin that presents structural homology with jacalin but shows a more marked biological activity. The initial state in our refolding puzzle was that proteins were unfolded after thermal denaturation or denaturation induced by guanidine hydrochloride, and under both conditions, frutalin was refolded. The denaturation curves, measured by fluorescence emission, gave values of conformational stability of 17.12 kJ x mol(-1) and 12.34 kJ x mol(-1), in the presence and absence of d-galactose, respectively. Native, unfolded, refolded frutalin and a distinct molecular form denoted misfolded, were separated by size-exclusion chromatography (SEC) on Superdex 75. The native and unfolded samples together with the fractions separated by SEC were also analyzed for heamagglutination activity by CD and fluorescence spectroscopy. The secondary structure content of refolded frutalin estimated from the CD spectra was found to be close to that of the native molecule. All the results obtained confirmed the successful refolding of the protein and suggested a nucleation-condensation mechanism, whereby the sugar-binding site acts as a nucleus to initiate the refolding process. The refolded monomers, after adopting their native three-dimensional structures, spontaneously assemble to form tetramers.  相似文献   

13.
The method aforementioned (Liu, W. and Tsou, C.L. (1987) Biochim. Biophys. Acta 916, 455-464) for the study of the kinetics of irreversible modification of enzyme activity has been applied to the reactivation of guanidine-denatured ribonuclease A, by following the hydrolysis of cyclic CMP during refolding upon diluting a guanidine-denatured enzyme with a substrate-containing buffer. Appropriate equations have been derived to deal with the kinetics of the substrate reaction during the course of activation, while the product formed, 3'CMP, is a competitive inhibitor. When the overall process consists of multiple first-order reactions, the individual rate constants could be obtained by suitable semilogarithmic plots. Moreover, in certain cases, it can be distinguished from the shapes of the plots, whether the overall process consists of parallel or consecutive first-order reactions. The kinetics for the reactivation reaction has been compared to that for the refolding of the substrate binding site, as indicated by complex formation with the competitive inhibitor, 2'CMP, and for the refolding of the molecule as a whole. At pH 6.0 and 25 degrees C, only monophasic first-order reactions could be detected by manual mixing for both the reactivation and the refolding processes. At lower temperatures (0-10 degrees C), both processes consist of two first-order reactions. In all cases, the same rate constants have been obtained for the refolding and reactivation reactions.  相似文献   

14.
Fructose 1,6-biphosphase is a well-characterized oligomer enzyme, and many effectors allosterically control its activity. In this report, we compared the activity, allosteric properties, and conformational changes in its denaturant-induced unfolding processes. In addition, a trpytophan residue has been introduced into the interface between the C1 and C2 subunits to investigate conformational changes during unfolding. Results show that the denaturation curves of WT FruP2ase detected by various methods do not agree, and the dissociation occurs first with a monomeric form existing around 0.4 M GdmCl as shown by gel filtration. The dissociation of all mutants is accompanied by changes in fluorescence intensity. The results suggest that the unfolding of FruP2ase is a complicated, multiphase process. The activation of FruP2ase by GdmCl at low concentrations can be interpreted as a consequence of the effect of monovalent cation. In the refolding experiments, it is found that Mg2+ is not only essential for enzyme activity, but also can assist the enzyme in refolding and association by preventing the formation of aggregates.  相似文献   

15.
Seminal RNase (BS-RNase), a ribonuclease from bovine seminal vesicles, is a homodimeric enzyme with a strong cytotoxic activity selective for tumor cells. It displays the unusual structural feature of existing in solution as an equilibrium mixture of two quaternary isoforms. The major one is characterized by the swap between subunits of their N-terminal ends, whereas the minor isoform shows no swap. The tendency of the two isolated isoforms to interconvert into each other has so far made it difficult to attribute the functional properties of BS-RNase to either isoform. Herein, molecular modeling and site-directed mutagenesis were used to engineer the refolding pathway of BS-RNase and obtain a stable variant of its non-swapping isoform. The protein was engineered with two extra disulfide bridges linking the N-terminal helix of each subunit to the main body of the same subunit. Purified as an active enzyme, the BS-RNase variant was found to be very resistant to thermal denaturation. Its functional characterization revealed that the lack of swapping has a negative effect on the cytotoxic activity of BS-RNase.  相似文献   

16.
Y Yao  Y Zhou    C Wang 《The EMBO journal》1997,16(3):651-658
The spontaneous reactivation yield of acidic phospholipase A2 (APLA2), a protein containing seven disulfide bonds, after reduction and denaturation in guanidine hydrochloride is very low. Protein disulfide isomerase (PDI) markedly increases the reactivation yield and prevents the aggregation of APLA2 during refolding in a redox buffer containing GSH and GSSG. S-methylated PDI (mPDI), with no isomerase but as nearly full chaperone activity as native PDI, has no effect on either the reactivation or aggregation of APLA2. However, the simultaneous presence of PDI and mPDI in molar ratios to APLA2 of 0.1 and 0.9 respectively fully reactivates the denatured enzyme, as does PDI alone at a ratio of 1. At ratios of 0.1 and 0.15 respectively, they completely suppress APLA2 aggregation, as does PDI alone at a ratio of 0.25. Moreover, delayed addition of PDI to the refolding buffer greatly diminished the reactivation yield of APLA2, but this deteriorating effect can be alleviated markedly by the presence of mPDI in the refolding buffer. Without GSSG, mPDI prevents the aggregation of APLA2 during refolding. It is proposed that the in vitro action of PDI as a foldase consists of both isomerase and chaperone activities, and the latter activity can be fully replaced by mPDI.  相似文献   

17.
T Herning  K Yutani  Y Taniyama  M Kikuchi 《Biochemistry》1991,30(41):9882-9891
The unfolding and refolding kinetics of six proline mutants of the human lysozyme (h-lysozyme) were carried out and compared to that of the wild-type protein. Our results show that the slow refolding phase observed in the h-lysozyme refolding kinetics cannot be ascribed to proline isomerization reactions. The h-lysozyme contains two proline residues at positions 71 and 103, both in the trans conformation in the native state. The refolding kinetics of the P71G/P103G mutant, in which both prolines have been replaced by a glycine, were found to be similar to those of the wild-type protein. The same slow phase amplitude of about 10% was found for both proteins, and the slow phase rate constants were also identical within experimental error. Other mutants such as P103G or P71G, in which only one of the two prolines has been replaced by a glycine, and A47P with its three prolines, gave identical slow refolding phases. The X-ray structure analysis and scanning microcalorimetric study of each protein (Herning et al., unpublished experiments) have confirmed that none of the considered mutations affects significantly protein structure and that no major changes in protein stability were brought about by these mutations. Therefore, comparison of the properties of the mutant and wild-type proteins is legitimate. Interestingly, the refolding kinetics of the V110P mutant, in which a proline residue has been introduced at position 110 (N-terminus of an alpha-helix), were clearly triphasic. For this mutant an additional very slow phase with properties similar to those expected from the proline hypothesis was detected. Equilibrium denaturation studies were conducted for each protein, and the refolding pathway of h-lysozyme is partly presented. We also discuss the effect of proline mutations on the energetics of the folding pathway of the h-lysozyme in water.  相似文献   

18.
The kinetics of refolding of completely reduced human serum albumin has been studied by various methods including immunological techniques. The decrease in thiol content is very rapid in the beginning of the reoxidation process and rather slow in the later stages. Polyacrylamide gel electrophoresis studies show that, in the earlier stages of refolding, the main part of the albumin is present as various oligomers and that a slow conversion to monomer occurs as reoxidation proceeds. Rocket immunoelectrophoresis shows that the completely reduced protein is devoid of native albumin antigenic determinants but that a rapid regain of immunoprecipitability is obtained upon reoxidation. A new 'consumption' rocket immunoelectrophoretic method has been used to estimate the total regain of antigenicity. The data obtained indicate that there is a preferential rapid folding to native structure in certain parts of the molecule but that areas with wrong or incomplete foldings exist a considerable time after the inital refolding period.  相似文献   

19.
The refolding and reactivation of aminoacylase is particularly difficult because of serious off-pathway aggregation. The effects of 4 osmolytes--dimethylsulphoxide, glycerol, proline, and sucrose--on the refolding and reactivation of guanidine-denatured aminoacylase were studied by measuring aggregation, enzyme activity, intrinsic fluorescence spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra, and circular dichroism (CD) spectra. The results show that all the osmolytes not only inhibit aggregation but also recover the activity of aminoacylase during refolding in a concentration-dependent manner. In particularly, a 40% glycerol concentration and a 1.5 mol/L sucrose concentration almost completely suppressed the aminoacylase aggregation. The enzyme activity measurements revealed that the influence of glycerol is more significant than that of any other osmolyte. The intrinsic fluorescence results showed that glycerol, proline, and sucrose stabilized the aminoacylase conformation effectively, with glycerol being the most effective. All 4 kinds of osmolytes reduced the exposure of the hydrophobic surface, indicating that osmolytes facilitate the formation of protein hydrophobic collapse. The CD results indicate that glycerol and sucrose facilitate the return of aminoacylase to its native secondary structure. The results of this study suggest that the ability of the various osmolytes to facilitate the refolding and renaturation of aminoacylase is not the same. A survey of the results in the literature, as well as those presented here, suggests that although the protective effect of osmolytes on protein activity and structure is equal for different osmolytes, the ability of osmolytes to facilitate the refolding of various proteins differs from case to case. In all cases, glycerol was found to be the best stabilizer and a folding aid.  相似文献   

20.
The effects of crowding agents, polyethylene glycol (PEG 20K), Dextran 70, and bovine serum albumin, on the denaturation of homotetrameric D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in 0.5 M guanidine hydrochloride and the reactivation of the fully denatured enzyme have been examined quantitatively. Increasing the concentration of PEG 20K to 225 mg/ml decreases the rate constant of slow phase of GAPDH inactivation to 5% but with no change for the fast phase. Chaperone GroEL assists GAPDH refolding greatly and shows even higher efficiency under crowding condition. Crowding mainly affects refolding steps after the formation of the dimeric folding intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号