首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human melanomas are known to contain vimentin intermediate filaments but there has been some dispute about their expression of cytokeratins. The cytoplasm of human M21 melanoma cells maintained in culture reacted with a rabbit anti-keratin antibody and two monoclonal anti-keratin antibodies AE1 and AE2. Cells derived directly from subcutaneous xenografts of M21 melanoma in nude mice, however, failed to express cytokeratins. The presence of keratin filaments in cultured M21 cells was confirmed by electronmicroscopic and immuno-electronmicroscopic examinations of cell extracts. Polyacrylamide gel electrophoresis (PAGE), revealed 46 KD keratin proteins in cultured M21 cells. Small amounts of these low molecular weight keratins were detected by PAGE in M21 melanoma xenografts even though immunofluorescence and immunoperoxidase assays failed to demonstrate keratin at the light microscopic level. Immunofluorescence revealed keratin and carcinoembryonic antigen (hitherto undetected in human melanomas) first on the 9th day of culture of xenograft-derived M21 cells. The appearance of keratin and CEA in M21 melanoma cells in vitro was not affected by inhibition of cellular proliferation or as a result of exposure to methotrexate or adriamycin. However, adriamycin altered the cytoplasmic distribution of keratin.  相似文献   

2.
Epithelial cells from normal pig bladders proliferated when cocultured with lethally irradiated feeder cells of the LA7 rat mammary tumor line. When the bladder cells and feeders were plated together at a confluent density, the bladder cells proliferated as the feeder cells died, resulting in a confluent culture of bladder cells. The bladder cells were successfully subcultured by plating with freshly irradiated LA7 feeder cells. In this way, bladder cells from five pigs were carried to confluency in passages 1, 4, 7, 7, and 13, amounting to at least 6, 18, 24, 26, and 45 doublings in culture, respectively, and none showed signs of slowed proliferation at the time of culture termination. Fibroblasts never became a prominent feature of these cultures, and their frequency was determined to be about 26 fibroblasts per 10(5) cells in passage 9. Pig bladder cells in 0.5% serum doubled in number in slightly over 3 d, whereas cells in 5.0% serum doubled in about 6 d. In fresh medium without feeder cells only minimal proliferation of bladder cells occurred. In LA7-conditioned medium the bladder cell numbers decreased, leading to the conclusion that the stimulus from LA7 cells is mechanically or physically transmitted. The bladder cells reacted with antibodies to keratins 7 and 18 but not to keratin 14 or vimentin. Tight junctions, visualized with an antibody to the ZO1 protein, connected all the cells to their neighbors. Most cells in passage 9 carried the diploid chromosome number of 38.  相似文献   

3.
Actively proliferating human retinal pigment epithelial (RPE) cells grown in tissue culture possess keratin-containing intermediate filaments that react with a combination of AE1 and AE3 anti-keratin monoclonal antibodies. Antibody reactivity is lost, however, from RPE cells as the cell population ceases to proliferate when it approaches confluence and attains morphological characteristics more similar to those in vivo. In contrast, clone 8.13 anti-keratin antibody stains all cells in the culture at all stages of the growth cycle and cell densities. These findings were reflected in vivo using retinal pigment epithelium taken directly from the eye. Normal non-proliferating RPE cells bound 8.13 antibody to cytoskeletal structures, as judged by indirect immunofluorescence, but did not bind AE1/AE3 antibodies. However, proliferating dedifferentiated RPE cells from the vitreous humor of patients with proliferative vitreoretinopathy possess filaments that bind both AE1/AE3 and 8.13 antibodies. Thus it appears that structures detected by AE1/AE3 antibodies only occur in actively growing RPE cells in vitro and in vivo. Keratins produced by RPE cells were identified using Western blotting. Species with molecular masses of 54 (keratin 7), 52 (keratin 8), 42 (keratin 18), and 40 (keratin 19) kiloDaltons were the most abundant in proliferating cultured cells, but cells isolated directly from the eye were found to lack keratin 7 and 19. Keratin 19 was, however, observed in proliferating RPE cells from some patients with proliferative vitreoretinopathy. The latter findings explain the differential staining observed with AE1/AE3 antibodies in cells in culture and isolated directly from the eye since these antibodies interact primarily with keratin 19 which is absent from non-proliferating RPE cells. In contrast to the presence of keratin-containing intermediate filaments in human RPE cells in vivo, there are apparently no detectable vimentin-containing cytoskeletal structures. However, all RPE cells cultured in vitro develop filaments composed of vimentin which persist in cells that have reached confluence.  相似文献   

4.
The polypeptide composition of epidermal keratin varies in disease. To better understand the biological meaning of these variations, we have analyzed keratins from a number of human epidermal diseases by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The results reveal a continuous spectrum of keratin expression ranging from one closely resembling the normal in vivo pattern to one almost identical to cultured epidermal keratinocytes. Specifically, a 50-kilodalton (kd) (AE1-positive) and a 58-kd (AE3-positive) keratin are present in all diseases, supporting the concept that they represent "permanent" markers for keratinocytes. A 56.5-kd (AE1) and a 65-67-kd (AE3) keratin, previously shown to be markers for keratinization, are expressed only by lesions retaining a keratinized morphology. A 48-kd (AE1) and a 56-kd (AE3) keratin are present in all hyperproliferative (para- or nonkeratinized) disorders, but not in normal abdominal epidermis or in ichthyosis vulgaris which is a nonhyperproliferative disease. These two keratins have previously been found in various nonepidermal keratinocytes undergoing hyperproliferation, suggesting that these keratins are not epidermis-specific and may represent markers for hyperproliferative keratinocytes in general. In various epidermal diseases, there is a reciprocal expression of the (keratin) markers for hyperproliferation and keratinization, supporting the mutual exclusiveness of the two cellular events. Moreover, our results indicate that, as far as keratin expression is concerned, cultured human epidermal cells resemble and thus may be regarded as a model for epidermal hyperplasia. Finally, the apparent lack of any major, disease-specific keratin changes in the epidermal disorders studied so far implies that keratin abnormalities probably represent the consequence, rather than the cause, of these diseases.  相似文献   

5.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

6.
通过体外培养兔角膜缘干细胞,观察其生物学特性,建立兔角膜缘干细胞的体外培养方法。方法0.25%胰蛋白酶消化角膜缘组织,用含15%胎牛血清的DMEM和F12(1:1)的培养液(DF)对兔角膜缘干细胞进行体外培养,形态学观察,培养的细胞早期使用AEl/AE3、晚期使用AE5角蛋白特异的单克隆抗体)作细胞免疫化学鉴定。结果:原代培养细胞48h后开始贴壁,部分细胞由圆形变为卵圆形或长梭形;10~14d形成单层,细胞呈圆形、卵圆形,类角膜上皮细胞;细胞传到第5代左右开始出现老化状态;免疫细胞化学染色:培养的细胞早期AEl/AE3呈阳性而少部分细胞AE5呈阳性,培养的细胞晚期AE5呈阳性。结论:本实验初步建立了一套兔角膜缘干细胞的体外培养方法。  相似文献   

7.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

8.
We have previously shown that the expression of a major 64-Kda keratin (K3) in corneal epithelium is site-related. It is found suprabasally in limbal epithelium, but uniformly (basal cells included) in central corneal epithelium. In the present study, we used a panel of antibodies against various components of corneal epithelial basement membrane to investigate a possible correlation between basement membrane heterogeneity and differential (basal vs. suprabasal) K3 keratin expression. One of these antibodies, AE27, stains human conjunctival basement membrane weakly, limbal basement membrane heterogeneously, and central corneal basement membrane strongly. Basal cells resting on basement membrane that stains strongly with AE27 tend to stain with monoclonal antibody AE5, which recognizes keratin K3. Basal cells on basement membrane staining weakly with AE27 tend not to stain with AE5. No such correlation exists between AE5 staining and type IV collagen, which is detectable immunohistochemically in conjunctival and limbal basement membrane, but not in corneal basement membrane overlying Bowman's layer. These results suggest that basement membrane of human corneal/conjunctival epithelium can be divided into at least three domains: the conjunctival basement membrane (type IV collagen-positive, AE27-weak), the limbal basement membrane (type IV collagen-positive, AE27-strong), and corneal basement membrane (type IV collagen-negative, AE27-strong). The results also raise the possibility that basement membrane heterogeneity may play a functional role in regulating keratin expression and other aspects of differentiation of corneal epithelium; more experiments are needed to test this hypothesis.  相似文献   

9.
《The Journal of cell biology》1986,103(6):2593-2606
Although numerous hair proteins have been studied biochemically and many have been sequenced, relatively little is known about their in situ distribution and differential expression in the hair follicle. To study this problem, we have prepared several mouse monoclonal antibodies that recognize different classes of human hair proteins. Our AE14 antibody recognizes a group of 10-25K hair proteins which most likely corresponds to the high sulfur proteins, our AE12 and AE13 antibodies define a doublet of 44K/46K proteins which are relatively acidic and correspond to the type I low sulfur keratins, and our previously described AE3 antibody recognizes a triplet of 56K/59K/60K proteins which are relatively basic and correspond to the type II low sulfur keratins. Using these and other immunological probes, we demonstrate the following. The acidic 44K/46K and basic 56-60K hair keratins appear coordinately in upper corticle and cuticle cells. The 10-25K, AE14-reactive antigens are expressed only later in more matured corticle cells that are in the upper elongation zone, but these antigens are absent from cuticle cells. The 10-nm filaments of the inner root sheath cells fail to react with any of our monoclonal antibodies and are therefore immunologically distinguishable from the cortex and cuticle filaments. Nail plate contains 10-20% soft keratins in addition to large amounts of hair keratins; these soft keratins have been identified as the 50K/58K and 48K/56K keratin pairs. Taken together, these results suggest that the precursor cells of hair cortex and nail plate share a major pathway of epithelial differentiation, and that the acidic 44K/46K and basic 56-60K hard keratins represent a co- expressed keratin pair which can serve as a marker for hair/nail-type epithelial differentiation.  相似文献   

10.
Keratin protein expression during the development of Rhesus monkey conducting airway epithelium was investigated by both biochemical and immunohistochemical methods. Keratin proteins were extracted from tracheal and intrapulmonary airway tissues of fetal (at 80- and 140-day gestational ages), neonatal, and adult animals. Using immunoblot analyses and immunohistochemistry with various monoclonal (AE1, AE3, AE8, 6.01 and 6.11) and monospecific antibodies (anti-50/55 and anti-40 kDa), the presence of keratins 5, 6, 8, 13, 14, and 19 in adult airway epithelium were demonstrated. Except for keratin 13 (51 kDa), the remaining keratins could be immunologically detected in fetal and neonatal tissues. To further understand the nature of the synthesis of keratin 13 during development, airway epithelial cells from different ages were isolated and cultured in vitro. Cultured cells were labeled with 35S-methionine, and the patterns of keratin protein were analyzed by one- and two-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Results indicated that the cultured airway cells synthesized additional keratins including 7, 15, 16, 17, and 18. However, consistent with the in vivo finding, fetal cells synthesized less or no keratin 13. These in vivo and in vitro studies strongly suggest that the synthesis of the keratin 13 in monkey conducting airway epithelium is developmentally regulated.  相似文献   

11.
In previous biochemical analyses, keratin 5 (Mr 58,000) has been detected in most mesotheliomas with epithelial component but not in pulmonary adenocarcinomas (Blobel et al., Am J Pathol 121: 235-247, 1985). In the present study, we have characterized a monoclonal antibody, AE14, as being selectively specific for keratin 5 (apart from the reactivity with certain hair proteins) as shown by immunoblotting of gel-electrophoretically separated proteins from various tissues. Immunohistochemical screening of a variety of normal human tissues, using immunoperoxidase microscopy on cryostat sections, revealed the binding of this antibody to the basal, immature cells of stratified squamous epithelia, to basal cells of pseudostratified epithelia, to some myoepithelial cells, thymic reticulum cells, certain pancreatic duct cells, as well as a variable subpopulation of mesothelial cells of the pleura and the peritoneum. In 12/13 epithelial and biphasic mesotheliomas of the pleura, heterogeneous but extended staining with antibody AE14 was seen whereas 21 pulmonary adenocarcinomas were negative or, in six of these cases, showed staining of only a few cells. Among carcinomas from other sites, colonic adenocarcinomas and renal cell carcinomas were negative whereas limited staining was found in some pancreatic adenocarcinomas. It is suggested that antibody AE14 may be useful, as a defined polypeptide-specific reagent, in the histologic distinction between mesotheliomas and most adenocarcinomas. Furthermore, the expression patterns of keratin 5 as detected by antibody AE14 in various normal and malignant epithelial tissues are discussed, particularly their relation to processes of squamous metaplasia and their indication of phenotypic tumor heterogeneity.  相似文献   

12.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
本文根据不同上皮细胞的角蛋白丝性质和多肽组成的差异,建立了四种不同上皮细胞系(株)间交叉污染的检测方法:1.SDS-PAGE法;2.免疫印迹法;3.AE1单抗免疫荧光染色法;4.角蛋白丝结构转化法。结果表明:方法1—3比较有用。我们认为,要获得较满意的检测结果,需要根据不同上皮细胞的特点,选择不同的方法配合使用。  相似文献   

14.
Using an in vivo rabbit model system, we have studied the morphological and biochemical changes in corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Light and electron microscopy showed that the three epithelia undergo different degrees of morphological keratinization. Corneal and conjunctival epithelia became heavily keratinized, forming multiple layers of superficial, anucleated cornified cells. In contrast, esophageal epithelium underwent only minor morphological changes. To correlate morphological alterations with the expression of specific keratin molecules, we have analyzed the keratins from these epithelia by the immunoblot technique using the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies. The results indicate that during vitamin A deficiency, all three epithelia express an AE1-reactive, acidic 56.5-kd keratin and an AE3-reactive, basic 65-67-kd keratin. Furthermore, the expression of these two keratins correlated roughly with the degree of morphological keratinization. AE2 antibody (specific for the 56.5- and 65-67-kd keratins) stained keratinized corneal epithelial sections suprabasally, as in the epidermis, suggesting that these two keratins are expressed mainly during advanced stages of keratinization. These two keratins have previously been suggested to represent markers for epidermal keratinization. Our present data indicate that they can also be expressed by other stratified epithelia during vitamin A deficiency-induced keratinization, and suggest the possibility that they may play a role in the formation of the densely packed tonofilament bundles in cornified cells of keratinized tissues.  相似文献   

15.
In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."  相似文献   

16.
Epithelial cells (ECs) from spontaneously developed thymomas in BUF/Mna rats were cultured, characterized and compared with ECs from normal thymuses. The ECs from thymomas had many more keratin filaments and PAS-positive vesicles in the cytoplasm than ECs from normal thymuses. The size and shape of ECs and their nuclei were heterogeneous and about 20% of ECs from thymomas had more than one nucleus. However, the growth rates and saturation densities of ECs from thymomas in monolayer culture were not markedly different from those of normal thymuses. The ECs from thymomas cultured in soft agar did not form any colonies. The distribution of the numbers of chromosomes found in ECs from thymomas was slightly broader than that in normal ECs, but no specific abnormalities nor marker chromosomes were noted. These findings indicate that ECs from thymomas are abnormal, but suggest that they are not malignant in nature.  相似文献   

17.
Summary Keratin filaments of epithelial- and taste-bud cells in the circumvallate papillae of adult and developing mice were studied by immunocytochemistry using monoclonal antikeratin antibodies (PKK2 and PKK3) and by conventional electron microscopy. Elongated cells (type-I,-II, and-III cells) of the taste buds were stained by PKK3 antibody, which reacts with 45-kdalton keratin, whereas basal cells of the taste buds and surrounding epithelial cells showed negative staining with PKK3. Such PKK3-reactive cells occurred at 0 day after birth, when taste-buds first appeared in the dorsal surface epithelium of the papillae. Thus 45-kdalton keratin seems to be an excellent immunocytochemical marker for identifying taste-bud cells. Epithelial cells in all layers of the trench wall and basal layer cells of the dorsal surface contained densely aggregated bundles of keratin filaments that reacted with PKK2 antibody, but not with PKK3. In contrast, taste-bud cells and spinous and granular layer cells of the dorsal surface possessed loose aggregated bundles of filaments that reacted with PKK3, but not with PKK2. These results suggest that the aggregation and distribution pattern of keratin filaments may reflect differences in the keratin subtypes that comprise these filaments.  相似文献   

18.
Epithelial cells always co-express acidic and basic keratin polypeptides. Mesenchymal cells, which do not normally contain keratins, can be induced by the inhibitor of DNA methylation 5-azacytidine to synthesize the basic keratin Endo A. In the present paper we show that the acidic keratins Endo B and Endo C can also be induced by 5-azacytidine in teratocarcinoma-derived fibroblasts. Furthermore, individual cells in which Endo B and/or Endo C keratins are found, always co-express the basic polypeptide Endo A. Other cytokeratins are not or very rarely found. Interestingly, Endo A, B, and C are usually associated in vivo and are known to be the first keratin polypeptides appearing during the development of the mouse embryo.  相似文献   

19.
We have characterized the keratin proteins of various bovine epithelial tissues by one- and two-dimensional gel electrophoresis, coupled with the immunoblot technique using AE1, AE2, AE3, AE5, CA20, BE14, and 6.11 monoclonal antikeratin antibodies. The results indicate that all known bovine keratins can be divided into two subfamilies. The "acidic" (Type I) subfamily consists of 41-, 43-, 45-, 46-, 50-, 54-, 56-, and 56.5-kDa keratins, all of which have a pI of less than 5.6, and most of them are recognized by our AE1 antibody, whereas the "neutral-to-basic" (Type II) subfamily consists of 55-, 57-, 58-, 62-65-, 66-, and 67-kDa keratins, all of which have a pI of greater than 6.0 and are recognized by our AE3 antibody. Tissue distribution data and cell culture studies show that, within the two subfamilies, keratins with similar "size ranks" form a "pair" as defined by frequent co-expression. Furthermore, within most "keratin pairs," the basic keratin is larger than the acidic one by 8-10 kDa. These results provide further support for the concepts of "keratin subfamilies" and keratin pairs and are consistent with the possibility that the acidic and basic members of at least some keratin pairs may interact specifically during in vivo tonofilament assembly and/or function. Immunoblotting data derived from the use of several monospecific antibodies show that although the size, charge, and pattern of expression of most bovine keratins are similar to those of the human counterparts, there are important exceptions to this rule.  相似文献   

20.
To study cell proliferation in different cell types and segments of the mammary gland, we devised a dual staining procedure, combining nuclear labeling by 5-bromo-2'-deoxy-uridine (BrdU) uptake (revealed by a dark-brown precipitate) and an alternative (red or blue) cytoplasmic labeling by antibodies specific for the differentiation proteins of epithelial, myoepithelial, and secretory cell types. The following markers, revealed by APAAP or beta-galactosidase procedure, were selected: alpha-smooth muscle actin for the myoepithelial cells, keratin (detected by AE1 monoclonal) for the luminal epithelial cells, alpha-lactalbumin and beta-casein for the secretory cells. To follow the full process of organogenesis, the study was conducted in mouse mammary glands from virgin, primed, and lactating animals and from glands cultured in vitro under specific hormone stimulation. Cell proliferation was localized mainly in focal areas (end buds), and mostly corresponded to "null" undifferentiated cells. Estrogen and progestin stimulation induced a relative increase of proliferating differentiated cells of either epithelial or myoepithelial type, localized in ducts and alveolar structures. Prolactin stimulation induced proliferation in secretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号