首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post‐translational modifications to residues in core histones convey epigenetic information. Their function can be evaluated in amino acid substitution mutants, although to date this method has not been used in mice. To this end, we have evaluated gene targeting vectors designed for Cre recombinase‐mediated conditional allelic replacement at the two unlinked genes encoding the histone variant H3.3. The conditional alleles consist of an uninterrupted wild‐type H3.3 coding sequence upstream of a desired alternative or proxy coding sequence. The arrangement of two loxP sites allows Cre‐mediated replacement of the wild‐type coding sequence with the proxy. To demonstrate proof of principle, at each locus we replaced the wild‐type coding sequence with a fluorescent reporter. This produced null alleles that will be useful to analyse the effects of H3.3 deficiency in development. Each targeting vector can readily be retrofitted with a proxy coding sequence encoding a modified H3.3 protein. Such vectors will allow for the conditional substitution of specific residues in order to dissect the roles of H3.3 post‐translational modifications in development and disease. genesis, 51:142?146, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Addition of amyloid β (Aβ) peptide Aβ40 to Aβ42 can delay Aβ42 aggregation, but consequent cytotoxicity has been reported to be enhanced or diminished. In the present study, we found that cytotoxicity was enhanced when human neuroblastoma SH‐SY5Y cells were incubated in a mixture of wt Aβ42 and Aβ40wt at a ratio of 1 : 10–20 (0.1 : 1–2 μM) for 24–36 h, whereas the enhancement was detected in cells incubated for longer times (48–60 h) with the less amyloidogenic Flemish Aβ40 variant or in cells incubated for as short as 12 h with the more amyloidogenic Dutch variant. Reductions in cytotoxicity by Aβ40 were most prominently observed in the Flemish and wt Aβ40/Aβ42 mixture at ratio 1 : 20 incubated for a short time (~12 h). The most cytotoxic Aβ40/Aβ42 mixtures were enriched in Aβ protofibril‐like structures, implying a strong correlation between cytotoxicity and this structure, the formation of which was dependent on amyloidogenic properties and incubation time. The consequences of the interactions were probably because of the different amyloidogenic properties of the Aβ40 variants, rather than to those of Aβ42, because aggregation rates of Aβ40 variants were highly dependent on sequence, whereas those of Aβ42 variants were not. These studies highlight a potential role for Aβ40 in cytotoxicity and provide novel mechanistic insights into the pathogenesis of each familial Alzheimer's disease‐associated Aβ40 variant. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
4.
PMNL leukocytosis is a feature common to many types of infectious and inflammatory diseases. How PMNL are recruited to tissues is not yet clear although it is a question that has considerable clinical importance. We investigated the function of PMNL which migrated through an artificial barrier (Chinese hamster ovary (CHO) cells, collagen and nylon cloth membrane) subjected to CT or choleragenoid treatment toward plain medium (the same RPMI in the upper and lower chamber) or medium containing chemotactic factor (fMLP or LPS or ZAS). CT treatment significantly (P<0.01) reduced the FcγR expression on the surface of PMNL. The PMNL functions, namely, migration, phagocytic activity and intracellular killing of staphylococci, also have been reduced significantly (P<0.01). FcγR expression and some functions of PMNL that migrate to chemoattractants were reduced, irrespective of the presence or absence of CT; however, the inhibitory effect of CT on PMNL function was observed only when PMNL migrate to the lower chamber without chemotactic factor. On the other hand choleragenoid treatment of CHO cells did not have any significant influence on PMNL function and FcγR expression. In conclusion, our experiments demonstrate that CT reduces EAFc rosetting and the FcγR-dependent phagocytic and bactericidal activity of bovine blood PMNL.  相似文献   

5.
6.
7.
Rapid production of recombinant human IgG with improved antibody dependent cell‐mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK‐293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes ~7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N‐linked glycosylation pathway of HEK‐293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core‐fucose. IgG1 transiently produced in kifunensine‐ treated HEK‐293F cells has improved affinity for the FcγRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells. Biotechnol. Bioeng. 2010; 105: 350–357. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.  相似文献   

9.
β‐adrenoceptors are the common pharmacological targets for the treatment of cardiovascular diseases and asthma. Genetic modifications of β‐adrenergic system in engineered mice affect their lifespan. Here, we tested whether genes encoding for key components of the β‐adrenergic signaling pathway are associated with human longevity. We performed a 10‐year follow‐up study of the Chinese longitudinal healthy longevity survey. The Han Chinese population in this study consisted of 963 long‐lived and 1028 geography‐matched young individuals. Sixteen SNPs from ADRB1, ADRB2, ADCY5, ADCY6, and MAPK1 were selected and genotyped. Two SNPs, rs1042718 (C/A) and rs1042719 (G/C), of ADRB2 in linkage disequilibrium (D' = 1.0; r2 = 0.67) were found to be associated with enhanced longevity in men in two geographically isolated populations. Bonferroni‐corrected P‐values in a combined analysis were 0.00053–0.010. Men with haplotype A‐C showed an increased probability to become centenarians (the frequency of A‐C in long‐lived and young individuals are 0.332 and 0.250, respectively, OR = 1.49, CI 95% = 1.17–1.88, = 0.0007), in contrast to those with haplotype C‐G (the frequency of C‐G in long‐lived and young individuals are 0.523 and 0.635, respectively, OR = 0.63, CI 95% = 0.51–0.78, = 0.000018). The permuted P‐values were 0.00005 and 0.0009, respectively. ADRB2 encodes the β2‐adrenergic receptor; the haplotype A‐C markedly reduced its translational efficiency compared with C‐G (= 0.002) in transfected HEK293 cells. Thus, our data indicate that enhanced production of β2‐adrenergic receptors caused by genetic variants is inversely associated with human lifespan.  相似文献   

10.
Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovorans incapable of growing autochthonously on 2,4‐dichlorophenoxyacetate (2,4‐D) were cultivated in a chemostat on 2,4‐D in the presence of (R)‐2‐(2,4‐dichlorophenoxy)propionate. Long‐term cultivation led to enhanced 2,4‐D degradation, as demonstrated by improved values of the Michaelis–Menten constant Km for 2,4‐D and the catalytic efficiency kcat/Km of the initial degradative key enzyme (R)‐2‐(2,4‐dichlorophenoxy)propionate/α‐ketoglutarate‐dependent dioxygenases (RdpA). Analyses of the rdpA gene did not reveal any mutations, indicating a nongenetic mechanism of adaptation. 2‐DE of enzyme preparations, however, showed a series of RdpA forms varying in their pI. During adaptation increased numbers of RdpA variants were observed. Subsequent immunoassays of the RdpA variants showed a specific reaction with 2,4‐dinitrophenylhydrazine (DNPH), characteristic of carbonylation modifications. Together these results indicate that posttranslational carbonylation modified the substrate specificity of RdpA. A model was implemented explaining the segregation of clones with improved degradative activity within the chemostat. The process described is capable of quickly responding to environmental conditions by reversibly adapting the degradative potential to various phenoxyalkanoate herbicides.  相似文献   

11.
OXA‐51 is a class D β‐lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA‐51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high‐resolution structures of apo OXA‐51 and OXA‐51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl‐intermediate. The structure shows that acyl‐doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA‐24/40 (doripenem) and OXA‐23 (meropenem). In the OXA‐51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA‐51. Similarly, in the OXA‐51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA‐51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA‐51 and OXA‐51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA‐51 variants.  相似文献   

12.
The post‐translational processing of human α1‐antichymotrypsin (AACT) in Bright Yellow‐2 (BY‐2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse‐chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non‐glycosylated form, in contrast with secreted variants undergoing multiple post‐translational modifications during their transit through the secretory pathway. All secreted forms of AACT were N‐glycosylated, with the presence of complex glycans as observed naturally on human AACT. Proteolytic trimming was also observed for all secreted variants, both during their intracellular transit and after their secretion in the culture medium. Overall, the targeting of human AACT to different compartments of BY‐2 tobacco cells led to the production of two protein products: (i) a stable, non‐glycosylated protein accumulated in the nucleus; and (ii) a heterogeneous mixture of secreted variants resulting from post‐translational N‐glycosylation and proteolytic processing. Overall, these data suggest that AACT is sensitive to resident proteases in the ER, the Golgi and/or the apoplast, and that the production of intact AACT in the plant secretory pathway will require innovative approaches to protect its structural integrity in vivo. Studies are now needed to assess the activity of the different AACT variants, and to identify the molecular determinants for the nuclear localization of AACT expressed in the cytosol.  相似文献   

13.
The diversity in substrate recognition spectra exhibited by various β‐lactamases can result from one or a few mutations in the active‐site area. Using Escherichia coli TEM‐1 β‐lactamase as a template that efficiently hydrolyses penicillins, we performed site‐saturation mutagenesis simultaneously on two opposite faces of the active‐site cavity. Residues 104 and 105 as well as 238, 240, and 244 were targeted to verify their combinatorial effects on substrate specificity and enzyme activity and to probe for cooperativity between these residues. Selection for hydrolysis of an extended‐spectrum cephalosporin, cefotaxime (CTX), led to the identification of a variety of novel mutational combinations. In vivo survival assays and in vitro characterization demonstrated a general tendency toward increased CTX and decreased penicillin resistance. Although selection was undertaken with CTX, productive binding (KM) was improved for all substrates tested, including benzylpenicillin for which catalytic turnover (kcat) was reduced. This indicates broadened substrate specificity, resulting in more generalized (or less specialized) variants. In most variants, the G238S mutation largely accounted for the observed properties, with additional mutations acting in an additive fashion to enhance these properties. However, the most efficient variant did not harbor the mutation G238S but combined two neighboring mutations that acted synergistically, also providing a catalytic generalization. Our exploration of concurrent mutations illustrates the high tolerance of the TEM‐1 active site to multiple simultaneous mutations and reveals two distinct mutational paths to substrate spectrum diversification.  相似文献   

14.
15.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

16.
The production of recombinant vitamin K dependent (VKD) proteins for therapeutic purposes is an important challenge in the pharmaceutical industry. These proteins are primarily synthesized as precursor molecules and contain pre–propeptide sequences. The propeptide is connected to γ‐carboxylase enzyme through the γ‐carboxylase recognition site for the direct γ‐carboxylation of VKD proteins that has a significant impact on their biological activity. Propeptides have different attitudes toward γ‐carboxylase and certain amino acids in propeptide sequences are responsible for the differences in γ‐carboxylase affinity. By aiming to replace amino acids in hFIX propeptide domain based on the prothrombin propeptide, pMT‐hFIX‐M14 expression cassette, containing cDNA of hFIX with substituted ?14 residues (Asp to Ala) was made. After transfection of Drosophila S2 cells, expression of the active hFIX was analyzed by performing ELISA and coagulation test. A 1.4‐fold increase in the mutant recombinant hFIX expression level was observed in comparison with that of a native recombinant hFIX. The enhanced hFIX activity and specific activity of the hFIXD‐14A (2.2 and 1.6 times, respectively) were further confirmed by comparing coagulation activity levels of substituted and native hFIX. Enrichment for functional, fully γ‐carboxylated hFIX species via barium citrate adsorption demonstrated 2‐fold enhanced recovery in the S2‐expressing hFIXD‐14A relative to that expressed native hFIX. These results show that changing ?14 residues leads to a decrease in the binding affinity to substrate, increase in γ‐carboxylation and activity of recombinant hFIX. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:515–520, 2018  相似文献   

17.
To investigate the structural role played by isostructural unbranched alkyl‐chains on the conformational ensemble and stability of β‐turn structures, the conformational properties of a designed model peptide: Plm‐Pro‐Gly‐Pda ( 1 , Plm: H3C—(CH2)14—CONH—; Pda: —CONH— (CH2)14—CH3) have been examined and compared with the parent peptide: Boc‐Pro‐Gly‐NHMe ( 2 , Boc: tert‐butoxycarbonyl; NHMe: N‐methylamide). The characteristic 13C NMR chemical‐shifts of the Pro Cβ and Cγ resonances ascertained the incidence of an all‐trans peptide‐bond in low polarity deuterochloroform solution. Using FTIR and 1H NMR spectroscopy, we establish that apolar alkyl‐chains flanking a β‐turn promoting Pro‐Gly sequence impart definite incremental stability to the well‐defined hydrogen‐bonded structure. The assessment of 1H NMR derived thermodynamic parameters of the hydrogen‐bonded amide‐NHs via variable temperature indicate that much weaker hydrophobic interactions do contribute to the stability of folded reverse turn structures. The far‐UV CD spectral patterns of 1 and 2 in 2,2,2‐trifluoroethanol are consistent with Pro‐Gly specific type II β‐turn structure, concomitantly substantiate that the flanking alkyl‐chains induce substantial bias in enhanced β‐turn populations. In view of structural as well as functional importance of the Pro‐Gly mediated secondary structures, besides biochemical and biological significance of proteins lipidation via myristoylation or palmytoilation, we highlight potential convenience of the unbranched Plm and Pda moieities not only as main‐chain N‐ and C‐terminal protecting groups but also to mimic and stabilize specific isolated secondary and supersecondary structural components frequently observed in proteins and polypeptides. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 419–426, 2013.  相似文献   

18.
19.
The active site of ß‐galactosidase (E. coli) contains a Mg2+ ion ligated by Glu‐416, His‐418 and Glu‐461 plus three water molecules. A Na+ ion binds nearby. To better understand the role of the active site Mg2+ and its ligands, His‐418 was substituted with Asn, Glu and Phe. The Asn‐418 and Glu‐418 variants could be crystallized and the structures were shown to be very similar to native enzyme. The Glu‐418 variant showed increased mobility of some residues in the active site, which explains why the substitutions at the Mg2+ site also reduce Na+ binding affinity. The Phe variant had reduced stability, bound Mg2+ weakly and could not be crystallized. All three variants have low catalytic activity due to large decreases in the degalactosylation rate. Large decreases in substrate binding affinity were also observed but transition state analogs bound as well or better than to native. The results indicate that His‐418, together with the Mg2+, modulate the central role of Glu‐461 in binding and as a general acid/base catalyst in the overall catalytic mechanism. Glucose binding as an acceptor was also dramatically decreased, indicating that His‐418 is very important for the formation of allolactose (the natural inducer of the lac operon).  相似文献   

20.
A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient‐like dual‐substrate (βα)8 phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis–Menten enzyme kinetics for both isomerase activities in wild‐type PriA from S. coelicolor and in selected single‐residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important β → α loop 5, namely, Arg139, which was postulated on structural grounds to be important for the dual‐substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser81Thr and PriA_Arg139Asn showed that these residues, which are contained on β → α loops and in close proximity to the N‐terminal phosphate‐binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X‐ray crystallographic structure of PriA_Arg139Asn elucidated at 1.95 Å herein strongly implicates the occurrence of conformational changes in this β → α loop as a major structural feature related to the evolution of the dual‐substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates—within a bifunctional and thus highly constrained active site—without compromising its structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号