首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jasmonates enhance the expression of various genes involved in terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus. We applied precursor feeding to our C. roseus suspensions to determine how methyl jasmonate (MJ) alters the precursor availability for TIA biosynthesis. C. roseus suspensions were induced with MJ (100 μM) on day 6 and fed loganin (0.30 mM), tryptamine (0.15 mM), loganin plus tryptamine, or geraniol (0.1–1.0 mM) on day 7. While MJ increased ajmalicine production by 3-fold, induced cultures were still limited by terpenoid precursors. However, both induced and non-induced cultures became tryptamine-limited with excess loganin. Geraniol feeding also increased ajmalicine production in non-induced cultures. But MJ appeared to increase geraniol availability in induced cultures, due presumably to the increased expression of Dxs with MJ addition.  相似文献   

2.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the −538 to −112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (−160 to −99) was identified as the major contributor to basal expression and another region (−99 to −37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the −572 to −37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light. Received: 2 February 1998 / Accepted: 5 March 1999  相似文献   

3.
4.
The octadecanoid pathway is responsible for producing jasmonic acid an important signaling molecule in plants, which controls the production of a variety of secondary metabolites. Previously the exogenous addition of jasmonic acid to Catharanthus roseus hairy roots caused an increase in terpenoid indole alkaloid (TIA) accumulation. The role of the endogenous production of jasmonic acid by the octadecanoid pathway in the production of TIAs in C. roseus hairy roots is examined. Feeding of octadecanoid pathway inhibitors suggests that the octadecanoid pathway does not actively control TIA production under normal growth conditions or during the UV‐B stress response in C. roseus hairy roots. Biotechnol. Bioeng. 2009;103: 1248–1254. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
We developed a transient expression assay for Madagascar periwinkle (Catharanthus roseus [L.] G. Don.) that is based on vacuum infiltration of intact leaves with recombinantAgrobacterium tumefaciens. This simple and rapid technique was used to overexpresstryptophan decarboxylase (tdc) andstrictosidine synthase (str1) genes, which encode 2 key enzymes of the terpenoid indole alkaloid (TIA) biosynthesis pathway. Immunoblot analysis of crude leaf extracts demonstrated that recombinant TDC and STR1 accumulated to detectable levels when targeted to their native subcellular compartments (i.e., the cytosol and vacuole, respectively) or to the chloroplast. In this article, we discuss possible applications of the transient assay in studies on the overexpression of enzymes of the TIA pathway in intactC. roseus leaves.  相似文献   

6.
Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.  相似文献   

7.
8.
9.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the ?538 to ?112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (?160 to ?99) was identified as the major contributor to basal expression and another region (?99 to ?37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the ?572 to ?37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light.  相似文献   

10.
Plants of the Apocynaceae family produce a wide range of terpenoid indole alkaloids (TIAs) which have important pharmaceutical applications. Studies of the molecular mechanisms controlling TIA biosynthesis may eventually provide possibilities to improve product yield by genetic modification of plants or cell cultures. However, these studies suffer from the lack of transformation/regeneration protocols for Apocynaceae plants. We chose to study the feasibility of Agrobacterium tumefaciens-mediated transformation of Tabernaemontana pandacaqui, because of the availability of an efficient regeneration procedure for this member of the Apocynaceae family. A procedure to produce transgenic T. pandacaqui plants was established, albeit with low efficiency. Transgenic expression was demonstrated of an intron-containing β-glucuronidase reporter gene and of a gene coding for the TIA biosynthetic enzyme strictosidine synthase from Catharanthus roseus, another Apocynaceae species. Received: 16 June 1997 / Revision received: 12 July 1997 / Accepted: 13 July 1997  相似文献   

11.
The medicinal plant Madagascar periwinkle, Catharanthus roseus (L.) G. Don, produces hundreds of biologically active monoterpene‐derived indole alkaloid (MIA) metabolites and is the sole source of the potent, expensive anti‐cancer compounds vinblastine and vincristine. Access to a genome sequence would enable insights into the biochemistry, control, and evolution of genes responsible for MIA biosynthesis. However, generation of a near‐complete, scaffolded genome is prohibitive to small research communities due to the expense, time, and expertise required. In this study, we generated a genome assembly for C. roseus that provides a near‐comprehensive representation of the genic space that revealed the genomic context of key points within the MIA biosynthetic pathway including physically clustered genes, tandem gene duplication, expression sub‐functionalization, and putative neo‐functionalization. The genome sequence also facilitated high resolution co‐expression analyses that revealed three distinct clusters of co‐expression within the components of the MIA pathway. Coordinated biosynthesis of precursors and intermediates throughout the pathway appear to be a feature of vinblastine/vincristine biosynthesis. The C. roseus genome also revealed localization of enzyme‐rich genic regions and transporters near known biosynthetic enzymes, highlighting how even a draft genome sequence can empower the study of high‐value specialized metabolites.  相似文献   

12.
Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor‐induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up‐regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90‐induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor‐induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up‐regulation of Str and Tdc. ABA‐induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO‐induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90‐induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90‐induced catharanthine biosynthesis of C. roseus cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:994–1001, 2013  相似文献   

13.
14.
15.
Treatment of Catharanthus roseus hairy roots with antagonists, like verapamil and CdCl2, that block the Ca2+ flux across the plasma membrane enhanced the total alkaloid content by 25% and their secretion 10 times. The specific Ca2+ chelator, EGTA, stimulated 90% of the total alkaloid secretion. Treatment with inhibitors of intracellular Ca2+ movement, like TMB-8 and trapsigargin, enhanced the total alkaloid content by 74% and their secretion into the culture media by 4- to 6-fold. The results suggest that an inhibition of external and internal Ca2+ fluxes induces an increase in the indole alkaloid accumulation and secretion in C. roseus hairy roots.  相似文献   

16.
17.
18.
19.
Cytosolic Ca2+ and jasmonate mediate signals that induce defense responses in plants. In this study, the interaction between Ca2+ and methyl jasmonate (MJ) in modulating defense responses was investigated by monitoring ajmalicine production in Catharanthus roseus suspension cultures. C. roseus suspensions were treated with nine combinations of CaCl2 (3, 23, and 43 mM) and MJ (0, 10, and 100 μM) on day 6 of growth. Increased Ca2+ influx through the addition of extracellular CaCl2 suppressed ajmalicine production in MJ-induced cultures. The highest ajmalicine production (4.75 mg/l) was observed when cells were treated with a low level of calcium (3 mM) combined with a high level of MJ (100 μM). In the presence of 3 mM CaCl2 in the medium, the addition of Ca2+ chelator EGTA (1, 2.5, and 5 mM) or Ca2+ channel blocker verapamil (1, 10, and 50 μM) to MJ-induced (100 μM) cultures on day 6 also inhibited ajmalicine production at higher levels of the Ca2+ inhibitors. Hence, ajmalicine production in MJ-induced C. roseus cultures depended on the intracellular Ca2+ concentration and a low extracellular Ca2+ concentration (3 mM) enhanced MJ-induced ajmalicine production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号