首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the challenges in tissue engineering is to provide adequate supplies of oxygen and nutrients to cells within the engineered tissue construct. Soft‐lithographic techniques have allowed the generation of hydrogel scaffolds containing a network of fluidic channels, but at the cost of complicated and often time‐consuming manufacturing steps. We report a three‐dimensional (3D) direct printing technique to construct hydrogel scaffolds containing fluidic channels. Cells can also be printed on to and embedded in the scaffold with this technique. Collagen hydrogel precursor was printed and subsequently crosslinked via nebulized sodium bicarbonate solution. A heated gelatin solution, which served as a sacrificial element for the fluidic channels, was printed between the collagen layers. The process was repeated layer‐by‐layer to form a 3D hydrogel block. The printed hydrogel block was heated to 37°C, which allowed the gelatin to be selectively liquefied and drained, generating a hollow channel within the collagen scaffold. The dermal fibroblasts grown in a scaffold containing fluidic channels showed significantly elevated cell viability compared to the ones without any channels. The on‐demand capability to print fluidic channel structures and cells in a 3D hydrogel scaffold offers flexibility in generating perfusable 3D artificial tissue composites. Biotechnol. Bioeng. 2010;105: 1178–1186. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Novel tissue‐culture bioreactors employ flow‐induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three‐dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear‐stress values within the physiological range of those naturally sensed by vascular cells (1–10 dyne/cm2), and will thereby provide suitable conditions for vascular tissue‐engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell‐layer thicknesses of 0, 50, 75, 100, and 125 µm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear‐stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell‐layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in‐depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. Biotechnol. Bioeng. 2010; 105: 645–654. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Focused ion beam/scanning electron microscopy (FIB/SEM) tomography is a novel powerful approach for three-dimensional (3D) imaging of biological samples. Thereby, a sample is repeatedly milled with the focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrarily small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. High-pressure freezing and freeze substitution, on the other hand, are the gold standards for electron microscopic preparation of whole cells. In this work, we combined these methods and substantially improved resolution by using the secondary electron signal for image formation. With this imaging mode, contrast is formed in a very small, well-defined area close to the newly produced surface. By using this approach, small features, so far only visible in transmission electron microscope (TEM) (e.g., the two leaflets of the membrane bi-layer, clathrin coats and cytoskeletal elements), can be resolved directly in the FIB/SEM in the 3D context of whole cells.  相似文献   

4.
Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre‐scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error‐prone manual tasks of cutting and handling large numbers of sections, and imaging them one‐by‐one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z‐resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block‐face electron microscopy (SBEM), focused ion beam SEM (FIB‐SEM) and automated tape‐collecting ultramicrotome SEM (ATUM‐SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.  相似文献   

5.
The volume expansion and dendrite growth of metallic Li anode during charge/discharge processes hinder its practical application in energy storage. Seeking an appropriate host for distributing bulk Li in a 3D manner is an effective way to solve these problems. Here, a novel porous graphene scaffold with cellular chambers for incorporating Li metal is presented. Using such a unique host, ultrathin Li layers of 3 µm in thickness are anchored on graphene to form porous microstructures, which provides much more reaction sites for Li ions compared with that of bulk Li, significantly promoting the reversibility of Li stripping and plating. Also the high current density can be effectively dissipated by the graphene scaffold to remarkably improve the rate capability of Li anode. The symmetrical Li cell using such a Li anode can run stably for 200 cycles at 5 mA cm?2 and even 70 cycles at 10 mA cm?2 in an unmodified carbonate‐based electrolyte, which has rarely been achieved in such aggressive working conditions. Lithium‐ion capacitor cells using this anode also show outstanding rate capability and cycling stability, which can work at an ultrahigh current density of 30 A g?1 and keep steady for over 4000 cycles at 3.75 A g?1.  相似文献   

6.
Methods of nonlinear optics provide a vast arsenal of tools for label‐free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament‐protein‐antibody staining, subject to limitations and difficulties especially severe in live‐brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long‐standing challenges in label‐free astroglia imaging. We demonstrate that, with a suitable beam‐focusing geometry and careful driver‐pulse compression, microscopy of second‐harmonic generation (SHG) can enable a high‐resolution label‐free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear‐optical imaging of red blood cells based on third‐harmonic generation (THG) enhanced by a three‐photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high‐contrast, high‐resolution, stain‐free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood‐vessel walls and astrocyte‐process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain.  相似文献   

7.
Three‐dimensional (3D) scaffold culture of pancreatic β‐cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β‐cells is that β‐cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β‐cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell‐laden collagen culture on β‐cell proliferation, a culture model with encapsulation of an oxygen‐generator was established. The oxygen‐generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β‐cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial‐temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation‐aided 3D culture would augment the oxygen supply required for the β‐cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell‐laden scaffold cultures with an in situ oxygen supply significantly improved the β‐cells' biological function. These β‐cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β‐cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221–228, 2017  相似文献   

8.
The ability to observe in situ 3D distribution and dynamics of endosymbionts in corals is crucial for gaining a mechanistic understanding of coral bleaching and reef degradation. Here, we report the development of a tissue clearing (TC) coupled with light sheet fluorescence microscopy (LSFM) method for 3D imaging of the coral holobiont at single‐cell resolution. The initial applications have demonstrated the ability of this technique to provide high spatial resolution quantitative information of endosymbiont abundance and distribution within corals. With specific fluorescent probes or assays, TC‐LSFM also revealed spatial distribution and dynamics of physiological conditions (such as cell proliferation, apoptosis, and hypoxia response) in both corals and their endosymbionts. This tool is highly promising for in situ and in‐depth data acquisition to illuminate coral symbiosis and health conditions in the changing marine environment, providing fundamental information for coral reef conservation and restoration.  相似文献   

9.
Telocyte (TC) is a newly identified type of cell in the cardiac interstitium ( www.telocytes.com ). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three‐dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB‐SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB‐SEM tomography confirms that they have long, narrow but flattened (ribbon‐like) telopodes, with humps generated by the podoms. FIB‐SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB‐SEM tomography of a human cell type.  相似文献   

10.
An optimized scaffold based on silicon microtubes is designed to increase the surface capacity of 3D lithium‐ion microbatteries. High‐depth, mechanically robust microstructures are fabricated using microelectronic facilities. Conformal deposition of anatase TiO2 is achieved using atomic layer deposition, realizing the targeted improvement for microbatteries; a surface capacity of 0.2 mA h cm–2 at a charge rate of C/10 is obtained in standard liquid electrolyte. This work paves the way for the fabrication of solid‐state 3D Li‐ion microbatteries with an efficient 3D scaffold.  相似文献   

11.
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC‐based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV, or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS, and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1255–1264, 2013  相似文献   

12.
Microfabricated systems equipped with 3D cell culture devices and in‐situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio‐functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near‐cell surface detection of excreted cellular compounds, SERS‐based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.  相似文献   

13.
Effective tissue engineering requires appropriate selection of cells and scaffold, where the latter serves as a mechanical and biological support for cell growth and functionality. The optimal combination of cell source and scaffold properties can vary for each desired application. Such preconditions necessitate enhanced understanding of the interactions between cells and scaffold within engineered tissue. Several studies have examined the deforming effects cells induce in scaffolds via exertion of contractile forces. In contrast, other studies focus on the scaffold's biochemical and mechanical properties and their effects on cell behavior.This review summarizes the mechanical interplay between cells and scaffold within engineered tissue. We present evidence for contractile forces exerted by cells on three-dimensional (3D) scaffolds and discuss existing methods for their quantification. In addition, we address some theories related to the effects of scaffold stiffness and mechanical stimulation on cell behavior. Further understanding of the reciprocal effects between cells and scaffold will provide both enhanced knowledge regarding the expected properties of engineered tissue and more competent tissue regeneration techniques.  相似文献   

14.
In this study, we evaluated the behavior of neural stem cells (NSCs) using a new peptide hydrogel scaffold named IKVAVmx, which was made by mixing self-assembling peptide RADA16 and designer peptide RADA16-IKVAV solutions. NSCs derived from rat cerebral cortex were culture-expanded in neuorobasal medium and seeded on the RADA16 and IKVAVmx hydrogels. Cells could penetrate the hydrogels and form a 3D cellular network. Compared to pure RADA16 scaffold, we found that IKVAVmx scaffold significantly promoted cell proliferation and stimulated cell migration into the 3D scaffold. Moreover, Immunocytochemistry and Western blot analysis indicated that the differentiation ratio of neurons from NSCs in IKVAVmx scaffold was higher than that in pure RADA16 scaffold. These results suggested that this new hydrogel scaffold provided an ideal substrate for NSCs 3D culture and suggested its further application for neural tissue engineering.  相似文献   

15.
Recent advances in the bioengineering field have introduced new opportunities enabling cell encapsulation in three-dimensional (3D) structures using either various natural or synthetic materials. However, such hydrogel scaffolds have not been fully biocompatible for cell cultivation due to the lack of physical stability or bioactivity. Here, we utilized a uniquely fabricated semi-synthetic 3D polyethylene glycol-fibrinogen (PEG-Fb) hydrogel scaffold, which exhibits both high stability and high bioactivity, to encapsulate HEK293 cells for the production of human recombinant acetylcholine esterase (AChE). To examine the beneficial bioactive effect of the PEG-Fb scaffold over 2D surfaces, an experimental system was established to compare the viability, proliferation and AChE secretion of encapsulated cells versus non-encapsulated surface-adherent cells in serum starvation. Our results show that the transfer of surface-adherent HEK293 cells from fully enriched medium with 10% FCS to 0.2% FCS resulted in an eightfold reduction in cell number and a fourfold reduction in AChE production. In contrast, the encapsulated cells were highly viable and about twofold more efficient in AChE production. In addition, they had round morphology with a twofold larger cell diameter, supporting the observation of increased AChE production. These results suggest a role of the PEG-Fb scaffold in providing a supportive microenvironment in reduced serum conditions that enhances encapsulated cell functions, opening new directions to study the implementation of this platform in large-scale pharmaceutical protein production.  相似文献   

16.

Background  

Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale.  相似文献   

17.
We report herein an effective strategy for encapsulating Escherichia coli in polyethylene glycol diacrylate (PEGDA) microdroplets using a microfluidic device and chemical polymerization. PEGDA was employed as a reactant due to the biocompatibility, high porosity, and hydrophilic property. The uniform size and shape of microdroplets are obtained in a single‐step process using microfluidic device. The size of microdroplets can be controlled through the changing continuous flow rate. The combination of microdroplet generation and chemical polymerization techniques provide unique environment to produce non‐toxic ways of fabricating microorganism‐encapsulated hydrogel microbeads. Due to these unique properties of micro‐sized hydrogel microbeads, the encapsulated E. coli can maintain viability inside of microbeads and green fluorescent protein (GFP) and red fluorescent protein (RFP) genes are efficiently expressed inside of microbeads after isopropyl‐β‐D ‐thiogalactopyranoside induction, suggesting that there is no low‐molecular weight substrate transfer limitation inside of microbeads. Furthermore, non‐toxic, gentle, and outstanding biocompatibility of microbeads, the encapsulated E. coli can be used in various applications including biotransformation, biosensing, bioremediation, and engineering of artificial cells. Biotechnol. Bioeng. 2010;107:747–751. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing.   相似文献   

19.
Direct perfusion of 3D tissue engineered constructs is known to enhance osteogenesis, which can be partly attributed to enhanced nutrient and waste transport. In addition flow mediated shear stresses are known to upregulate osteogenic differentiation and mineralization. A quantification of the hydrodynamic environment is therefore crucial to interpret and compare results of in vitro bioreactor experiments. This study aims to deal with the pitfalls of numerical model preparation of highly complex 3D bone scaffold structures and aims to provide more accurate wall shear stress (WSS) estimates. µCT imaging techniques were used to reconstruct the geometry of both a titanium (Ti) and a hydroxyapatite scaffold, starting from 430 images with a resolution of 8 µm. To tackle the tradeoff between model size and mesh resolution we selected two concentric regions of interest (cubes with a volume of 1 and 3.375 mm3, respectively) for both scaffolds. A flow guidance in front of the real inlet surface of the scaffold was designed to mimic realistic inlet conditions. With a flow rate of 0.04 mL/min perfused through a 5 mm diameter scaffold at an inlet velocity of 33.95 µm/s we obtained average WSSs of 1.10 and 1.46 mPa for the 1 mm3 and the 3.375 mm3 model of the hydroxyapatite scaffold compared to 1.40 and 1.95 mPa for the 1 mm3 model and the 3.375 mm3 model of the Ti scaffold, showing the important influence of the scaffold micro‐architecture heterogeneity and the proximity of boundaries. To assess that influence we selected cubic portions, of which the WSS data were analyzed, with the same size and the same location within both 1 and 3.375 mm3 cubic models. Varying the size of the inner portions simultaneously in both model selections gives a quantification of the sensitivity to boundary neighborhood. This methodology allows to get more insight in the complex concept of tissue engineering and will likely help to understand and eventually improve the fluid‐mechanical aspects. Biotechnol. Bioeng. 2009;103: 621–630. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号