首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016  相似文献   

2.
The soil microbiome is inherently complex with high biological diversity, and spatial heterogeneity typically occurring on the submillimetre scale. To study the microbial ecology of soils, and other microbiomes, biomolecules, that is, nucleic acids and proteins, must be efficiently and reliably co‐recovered from the same biological samples. Commercial kits are currently available for the co‐extraction of DNA, RNA and proteins but none has been developed for soil samples. We present a new protocol drawing on existing phenol–chloroform‐based methods for nucleic acids co‐extraction but incorporating targeted precipitation of proteins from the phenol phase. The protocol is cost‐effective and robust, and easily implemented using reagents commonly available in laboratories. The method is estimated to be eight times cheaper than using disparate commercial kits for the isolation of DNA and/or RNA, and proteins, from soil. The method is effective, providing good quality biomolecules from a diverse range of soil types, with clay contents varying from 9.5% to 35.1%, which we successfully used for downstream, high‐throughput gene sequencing and metaproteomics. Additionally, we demonstrate that the protocol can also be easily implemented for biomolecule co‐extraction from other complex microbiome samples, including cattle slurry and microbial communities recovered from anaerobic bioreactors, as well as from Gram‐positive and Gram‐negative pure cultures.  相似文献   

3.
Visible circular dichroism (CD) spectra from the copper(II) titration of the metal-binding region of the prion protein, residues 57-98, were analyzed using the self-modeling curve resolution method multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS is a set of mathematical tools for estimating pure component spectra and composition profiles from mixture spectra. Model-free solutions (e.g., soft models) are produced under the assumption that pure component profiles should be nonnegative and unimodal. Optionally, equality constraints can be used when the concentration or spectrum of one or more species is known. MCR-ALS is well suited to complex biochemical systems such as the prion protein which binds multiple copper ions and thus gives rise to titration data consisting of several pure component spectra with overlapped or superimposed absorption bands. Our study reveals the number of binding modes used in the uptake of Cu2+ by the full metal-binding region of the prion protein and their relative concentration profiles throughout the titration. The presence of a non-CD active binding mode can also be inferred. We show that MCR-ALS analysis can be initialized using empirically generated or mathematically generated pure component spectra. The use of small model peptides allows us to correlate specific Cu2+-binding structures to the pure component spectra.  相似文献   

4.
A new algorithm, called convex constraint analysis, has been developed to deduce the chiral contribution of the common secondary structures directly from experimental CD curves of a large number of proteins. The analysis is based on CD data reported by Yang, J.T., Wu, C.-S.C. and Martinez, H.M. [Methods Enzymol., 130, 208-269 (1986)]. Application of the decomposition algorithm for simulated protein data sets resulted in component spectra [B (lambda, i)] identical to the originals and weights [C (i, k)] with excellent Pearson correlation coefficients (R) [Chang, C.T., Wu, C.-S.C. and Yang, J.T. (1978) Anal. Biochem., 91, 12-31]. Test runs were performed on sets of simulated protein spectra created by the Monte Carlo technique using poly-L-lysine-based pure component spectra. The significant correlational coefficients (R greater than 0.9) demonstrated the high power of the algorithm. The algorithm, applied to globular protein data, independent of X-ray data, revealed that the CD spectrum of a given protein is composed of at least four independent sources of chirality. Three of the computed component curves show remarkable resemblance to the CD spectra of known protein secondary structures. This approach yields a significant improvement in secondary structural evaluations when compared with previous methods, as compared with X-ray data, and yields a realistic set of pure component spectra. The new method is a useful tool not only in analyzing CD spectra of globular proteins but also has the potential for the analysis of integral membrane proteins.  相似文献   

5.
Absorption and CD spectra of bacteriochlorophyll a proteins and bacteriochlorophyll a reaction center complexes from two strains of Chlorobium limicola were recorded at 77 °K. Visual inspection showed that the Qy-band of chlorophyll in either protein was split into at least five components. Analysis of the spectra in terms of asymmetric Gaussian component pairs by means of computer program GAMET showed that six components are necessary to fit the spectra from strain 2K. These six components are ascribed to an exciton interaction between the seven bacteriochlorophyll a molecules in each subunit. The clear difference between the exciton splitting in the two bacteriochlorophyll a proteins shows that the arrangement of the chlorophyll molecules in each subunit must be slightly different.

The spectra for the bacteriochlorophyll a reaction center complexes have a component at 834 nm (absorption) and 832 nm (CD) which does not appear in the spectra of the bacteriochlorophyll a proteins. The new component is ascribed to a reaction center complex which is combined with bacteriochlorophyll a proteins to form the bacteriochlorophyll a reaction center complex. The complete absorption (or CD) spectrum for a given bacteriochlorophyll a reaction center complex can be described to a first approximation in terms of the absorption (or CD) spectrum for the corresponding bacteriochlorophyll a protein plus the new component ascribed to the reaction center complex.  相似文献   


6.
A new method for determination of the population of the high-spin state (high-spin content) in ferric cytochrome P-450 is presented. Based on curve fitting the electronic absorption spectra with a linear combination of gaussian bands analytical functions for the pure high-spin and pure low-spin states were constructed. These functions were used to fit the high-spin/low-spin mixed spectra. A good fit of the absorption spectra of six different cytochrome P-450 proteins in the presence and absence of substrates was found, indicating a similar pi-electron structure of the porphyrin and a similar chemical nature of the nearest coordination sphere of the iron in all cytochrome P-450 proteins.  相似文献   

7.
The separation of proteins by hydrophobic-interaction HPLC and reversed-phase HPLC depends upon differences in the hydrophobicity of accessible surface groups. The elution order of a group of snake venom cardiotoxins was found to vary between these two HPLC methods. Circular dichroism spectroscopy showed that the eluant acetonitrile-trifluoroacetic acid used for reversed-phase HPLC altered the conformation of the toxins, whereas the salt-buffer eluting medium used for hydrophobic-interaction HPLC did not affect toxin conformation. The retention times of cardiotoxins on reversed-phase HPLC are therefore influenced by their conformational instability in the eluting medium which causes partial or complete unfolding. Hydrophobic interaction is clearly the preferred method with which to correlate the "surface hydrophobicity" of cardiotoxins and their biological effects.  相似文献   

8.
BACKGROUND: Spectral Imaging Microscopy is gaining attention in biological research. Most of the commercial systems in vogue employ linear spectral un-mixing algorithms and/or spectral profile matching algorithms to extract the component spectral information from the measured specimen spectra. The need to accurately deconvolve multiple spectra with minimal cross-contamination is always accompanied by an increase in system complexity and cost. METHODS: We describe here a variant of the spectral waveform cross-correlation analysis (SWCCA) method where the master reference spectral library is constructed by composite spectra with varying ratios of component spectra, unlike the conventional spectral library where pure spectra form the components. We demonstrate that this spectral kinetics ratiometric approach gives realistic estimates of fluorophore distribution in living cells with a better spectral correlation as compared with pure component spectral libraries. RESULTS: Biological applications demonstrated in this article include acceptor photobleaching FRET, caspase activity during cell death and mitochondrial membrane polarization kinetics during substrate metabolism. CONCLUSIONS: Beyond the representative applications presented in this article, we think the proposed approach can be valuable in dynamic studies of a variety of other cellular processes such as pH oscillations, photobleaching and quenching kinetics. Besides giving better spectral correlation and real-time monitoring of biophysical processes in living cells, this method can serve as an economical solution for high-throughput spectral classification requirements.  相似文献   

9.
We established Fe(III)‐reducing co‐cultures of two species of metal‐reducing bacteria, the Gram‐positive Desulfotomaculum reducens MI‐1 and the Gram‐negative Geobacter sulfurreducens PCA. Co‐cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co‐culture. Co‐cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co‐cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co‐cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co‐culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c‐type cytochromes and type IV pili proteins, were significantly increased in abundance in co‐cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co‐cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co‐culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co‐cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.  相似文献   

10.
Lipoteichoic acid (LTA) is an important cell wall component of Gram‐positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate‐chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two‐hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi‐enzyme complex and providing further evidence for the co‐ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co‐ordination with cell division, while glycolipid synthesis takes place throughout the membrane.  相似文献   

11.
The profile of high boiling point organic acids in urine samples from both normal subjects and patients suspected of having some form of metabolic disorder has been determined by combined gas chromatography—mass spectrometry. Fifteen different compounds eluting after hippuric acid have been identified, including two, cinnamoylglycine and acetyltributylcitrate, which have not been recognised previously. Relative retention times and abbreviated mass spectra of the identified compounds are presented.  相似文献   

12.
A global thermodynamic analysis, normally used for pure cultures, has been performed for steady‐state data sets from acidogenic mixed cultures. This analysis is a combination of two different thermodynamic approaches, based on tabulated standard Gibbs energy of formation, global stoichiometry and medium compositions. It takes into account the energy transfer efficiency, ?, together with the Gibbs free energy dissipation, ΔGo, analysis of the different data. The objective is to describe these systems thermodynamically without any heat measurement. The results show that ? is influenced by environmental conditions, where increasing hydraulic retention time increases its value all cases. The pH effect on ? is related to metabolic shifts and osmoregulation. Within the environmental conditions analyzed, ? ranges from 0.23 for a hydraulic retention time of 20 h and pH 4, to 0.42 for a hydraulic retention time of 8 h and a pH ranging from 7–8.5. The estimated values of ΔGo are comparable to standard Gibbs energy of dissipation reported in the literature. For the data sets analyzed, ΔGo ranges from –1210 kJ/molx, corresponding to a stirring velocity of 300 rpm, pH 6 and a hydraulic retention time of 6 h, to –20744 kJ/molx for pH 4 and a hydraulic retention time of 20 h. For average conclusions, the combined approach based on standard Gibbs energy of formation and global stoichiometry, used in this thermodynamic analysis, allows for the estimation of Gibbs energy dissipation values from the extracellular medium compositions in acidogenic mixed cultures. Such estimated values are comparable to the standard Gibbs energy dissipation values reported in the literature. It is demonstrated that ? is affected by the environmental conditions, i.e., stirring velocity, hydraulic retention time and pH. However, a relationship that relates this parameter to environmental conditions was not found and will be the focus of further research.  相似文献   

13.
14.
Human plasma is dominated by high‐abundance proteins which severely impede the detection of low‐abundance proteins. Unfortunately, now there is no efficient method for large‐scale depletion of high‐abundance proteins in human plasma. In this study, we developed a new strategy, strong anion exchange (SAX)/RP 2D LC system, which has potential for large‐scale depletion of high‐abundance proteins in human plasma. Separation gradients of the system were optimized to ensure an extensive separation of plasma proteins. Plasma was fractionated into 67 fractions by SAX. All these fractions were subjected a thorough separation by the 2D RPLC and 66 peaks with high UV absorption (>20 mAU) at 215 nm were collected. Proteins in these peaks were identified by LC‐MS/MS analysis. Results showed that 83 proteins could be identified in these peaks, 68 among them were reported to be high‐ or middle‐abundance proteins in plasma. All these proteins had definite retention times and were mapped in the 2D SAX‐RP system, which resulted in accurate depletion of high‐abundance proteins with ease. Our studies provide a convenient and effective method for large‐scale depletion of high‐abundance proteins and in‐depth research in human plasma proteomics.  相似文献   

15.
M Ge  J H Freed 《Biophysical journal》1993,65(5):2106-2123
The model of microscopic order and macroscopic disorder was used to stimulate electron spin resonance spectra of spin-labeled lipids, 5-PC, 10-PC, and 16-PC in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) containing gramicidin A' (GA) at temperatures above the gel-to-liquid crystal transition of DPPC. The simulations show that at a lower concentration of GA (i.e., molar ratios of DPPC/GA greater than 3), GA has only a slight effect on the acyl chain dynamics. The rotational diffusion rate around the axis parallel to the long hydrocarbon chain remains unchanged or increases slightly, while the rate around the perpendicular axes decreases slightly. These spectra from DPPC/GA mixtures could only be fit successfully with two or more components consistent with the well-known concept of "boundary lipids," that is, the peptide induces structural inhomogeneity in lipid bilayers. However, the spectra were significantly better fit with additional components that exhibit increased local ordering, implying decreased amplitude of rotational motion, rather than immobilized components with sharply a reduced rotational rate. The largest relative effects occur at the end of the acyl chains, where the average local order parameter St of 16-PC increases from 0.06 for pure lipid to 0.66 for 1:1 DPPC/GA. The inhomogeneity in ordering in DPPC bilayers due to GA decreases with increasing temperature. The hyperfine tensor component Azz increases for 10-PC and 16-PC when GA is incorporated into DPPC bilayers, indicating that water has deeply penetrated into the DPPC bilayers. Simulations of published electron spin resonance spectra of 14-PC in dimyristoylphosphatidylcholine/cytochrome oxidase complexes were also better fit by additional components that were more ordered, rather than immobilized. The average local order parameter in this case is found to increase from 0.11 for pure dimyristoylphosphatidylcholine to 0.61 for a lipid/protein ratio of 50. These spectra and their simulations are similar to the results obtained with 16-PC in the DPPC/GA mixtures. The relevance to studies of lipid-protein interactions for other proteins is briefly discussed.  相似文献   

16.
Largemouth bass ( Micropterus salmoides ) with an average weight of 45.5 g were used to study ration level effects on nitrogen excretion, nitrogen retention, and gross efficiency of utilization of nitrogen for growth. Bass were starved 3 to 4 days and then each bass was placed into an aquarium containing a known volume of water. One day after the fishes were placed in aquaria, nitrogen excretion rates were determined; this rate is the maintenance nitrogen excretion. Each fish was then fed one or more shiners ( Notropis cornutus ); fish were fed only once. Nitrogen excretion measurements were made daily until the rates were similar to maintenance rates. The nitrogen excretion rates for each day after feeding which were above the maintenance nitrogen excretion were combined and reflect the total nitrogen excretion for a given ration level. All ration levels were converted to nitrogen consumption in mg and nitrogen absorption was calculated from subtracting the average faecal nitrogen from nitrogen consumption. From data on nitrogen consumption, nitrogen absorption, nitrogen excretion, and faecal nitrogen, calculations were made for nitrogen retention and gross efficiency of utilization of nitrogen for growth.
As ration level and nitrogen absorption increased, nitrogen excretion increased and is described by the equation, Y = 8.56+0.40 X , where Y is total nitrogen excretion and X is nitrogen absorption. Nitrogen retention also increased with nitrogen absorption and is described by the equation, Y =–8.57+0.60 X , where Y is nitrogen retention and X is nitrogen absorption. Efficiency increases rapidly above maintenance, but levels off at higher ration levels and approaches an asymptote of 60%.  相似文献   

17.
18.
ECD spectroscopy is traditionally used for rapid, non‐atomic level structure analysis of natural products such as peptides and proteins. Unlike globular proteins, peptides less frequently adopt a single 3D‐fold in a time average manner. Moreover, they exhibit an ensemble of conformers composed of a multitude of substantially different structures. In principle, both ECD‐ and vibrational circular dichroism (VCD)‐spectroscopy are sensitive enough to pick up structural information on these dynamic ensembles. However, the interpretation of the raw spectral data of these highly dynamic molecular systems can be cumbersome. The herein presented Convex Constraint Analysis Plus method, or CCA+ for short ( http://www.chem.elte.hu/departments/protnmr/cca/ ), provides a unique opportunity for spectral ensemble analysis of peptides, glycopeptides, peptidomimetics, and other foldamers. The precision and accuracy of the approach is presented here through different peptide model systems. An interesting temperature and pH dependent folding and unfolding of a miniprotein (e.g. Tc5b variant) is also described. Analysis of CD spectra sets strongly affected by solvent and ion type is also introduced to account for severe environmental‐induced structure influencing effect(s). The deconvolution makes always possible the quantitative data analysis even when the interpretation of the deconvolution resulted in pure CD curves is complex. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
20.
A gene coding for lycopene beta-monocyclase, which metabolizes lycopene (psi,psi-carotene) to gamma-carotene (beta,psi-carotene), was isolated for the first time from a unique marine bacterium strain P99-3 that produces myxol (a gamma-carotene derivative). This lycopene beta-monocyclase gene (designated crtYm) was included in the gene cluster which contained carotenoid biosynthetic gene (crtI, crtB, crtZ, crtY, and crtA) homologs. CrtYm, the CrtY homolog, metabolized lycopene to gamma-carotene, which was confirmed by deletion/expression analysis of the crtYm and by subsequent analysis of the metabolites from lycopene based on the retention times on high-performance liquid chromatography, UV-visible absorption spectra, and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号