首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we demonstrate that the Escherichia coli–Bacillus megaterium shuttle vector pHIS1522 can be used as a versatile expression vector. Recombinant genes under the control of the xylA promoter are constitutively expressed at a high level in E. coli strains, whereas their expression is strongly induced by the addition of xylose in B. megaterium. The utilization of D ‐xylose is known to be dependent on the xylAB genes in a number of bacteria. For B. megaterium a XylA‐based expression system was established that allows tightly regulated and highly efficient heterologous gene expression. The open reading frame (ORF) of the fluorescent protein turboRFP was cloned under the control of the xylA promoter of B. megaterium in the shuttle vector pHIS1522. Unexpectedly, tRFP expression was not only observed in B. megaterium, but also in E. coli. Based on fluorescence measurements and Western blot analysis, expression was comparable or slightly higher compared with the commonly used pET vectors. Therefore, pHIS1522 can be used as a versatile expression vector in both, B. megaterium and E. coli.  相似文献   

2.
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli , dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.  相似文献   

3.
4.
In this study, an improvement in the oligonucleotide‐based DNA microarray for the genoserotyping of Escherichia coli is presented. Primer and probes for additional 70 O antigen groups were developed. The microarray was transferred to a new platform, the ArrayStrip format, which allows high through‐put tests in 96‐well formats and fully automated microarray analysis. Thus, starting from a single colony, it is possible to determine within a few hours and a single experiment, 94 of the over 180 known O antigen groups as well as 47 of the 53 different H antigens. The microarray was initially validated with a set of defined reference strains that had previously been serotyped by conventional agglutination in various reference centers. For further validation of the microarray, 180 clinical E. coli isolates of human origin (from urine samples, blood cultures, bronchial secretions, and wound swabs) and 53 E. coli isolates from cattle, pigs, and poultry were used. A high degree of concordance between the results of classical antibody‐based serotyping and DNA‐based genoserotyping was demonstrated during validation of the new 70 O antigen groups as well as for the field strains of human and animal origin. Therefore, this oligonucleotide array is a diagnostic tool that is user‐friendly and more efficient than classical serotyping by agglutination. Furthermore, the tests can be performed in almost every routine lab and are easily expanded and standardized.  相似文献   

5.
6.
The repertoire of functional outputs interfaced with the LuxI/LuxR quorum sensing system in engineered Escherichia coli has been expanded to include motility via inducible expression of motB. Appropriate choice of ribosome binding site controlling MotB translation was crucial to achieving control over motility.  相似文献   

7.
8.
Bacterial therapies have the potential to overcome resistances that cause chemotherapies to fail. When using bacteria to produce anticancer agents in tumors, triggering gene expression is necessary to prevent systemic toxicity. The use of chemical triggers, however, is hampered by poor delivery of inducing molecules, which reduces the number of activated bacteria. To solve this problem, we created a cell‐communication system that enables activated bacteria to induce inactive neighbors. We hypothesized that introducing cell communication into Salmonella would improve direct triggering strategies by increasing protein production, increasing sensitivity to inducer molecules, and enabling expression in tumor tissue. To test these hypotheses we integrated the PBAD promoter into the quorum‐sensing machinery from Vibrio fischeri. The expression of a fluorescent reporter gene was compared to expression from non‐communicating controls. Function in three‐dimensional tissue was tested in a tumor‐on‐a‐chip device. Bacterial communication increased fluorescence 40‐fold and increased sensitivity to inducer molecules more than 10,000‐fold. The system enabled bacteria to activate neighbors and increased the time‐scale of protein production. Gene expression was controllable and tightly regulated. At the optimal inducing signal, communicating bacteria produced 350 times more protein than non‐communicating bacteria. The cell‐communication system created in this study has uses beyond cancer therapy, including protein manufacturing, bioremediation and biosensing. It would enable amplified induction of gene expression in any environment that limits availability of inducer molecules. Ultimately, because inducible cellular communication enables gene expression in tissue, it will be a critical component of bacterial anticancer therapies. Biotechnol. Bioeng. 2013; 110: 1769–1781. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
A better understanding of molecular signaling between myeloid‐derived suppressor cells (MDSC), tumor cells, T‐cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor‐bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro‐inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom‐up proteomic analysis to identify plasma membrane associated pro‐inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency.  相似文献   

10.
11.
12.
13.
NMR Spectroscopy has been established as a major tool for identification and quantification of metabolites in a living system. Since the metabolomics era began, one‐dimensional NMR spectroscopy has been intensively employed due to its simplicity and quickness. However, it has suffered from an inevitable overlap of signals, thus leading to inaccuracy in identification and quantification of metabolites. Two‐dimensional (2D) NMR has emerged as a viable alternative because it can offer higher accuracy in a reasonable amount of time. We employed 1H,13C‐HSQC to profile metabolites of six different laboratory E. coli strains. We identified 18 metabolites and observed clustering of six strains according to their metabolites. We compared the metabolites among the strains, and found that a) the strains specialized for protein production were segregated; b) XL1‐Blue separated itself from others by accumulating amino acids such as alanine, aspartate, glutamate, methionine, proline, and lysine; c) the strains specialized for cloning purpose were spread out from one another; and d) the strains originating from B strain were characterized by succinate accumulation. This work shows that 2D‐NMR can be applied to identify a strain from metabolite analysis, offering a possible alternative to genetic analysis to identify E. coli strains.  相似文献   

14.
15.
Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h?1) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well‐defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C‐mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C‐mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, µ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369–381. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer‐aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate.  相似文献   

17.
Aims: This study investigates the effects of N‐(n‐dodecyl)diethanolamine (DDA) on enzymes and growing cells of Escherichia coli NCIMB 8277. Methods and Results: Enzyme activities in the presence of DDA were determined by measuring substrate‐dependent oxygen consumption by whole cells, or of NADH formation or oxidation by cell extracts. Lysis of growing cells was followed by measuring changes in turbidity and cell count. DDA promptly arrested oxygen uptake on pyruvate and acetate, due to cofactor loss rather than to enzyme denaturation, since cell‐free glyceraldehyde‐3‐phosphate and NADH dehydrogenases remained active. Formate and succinate oxidation by membrane‐bound enzyme systems independent of cofactors was likewise unaffected. DDA lysed growing cells at rates related to drug concentration, pH, and the previous growth rate. Conclusions: Loss of cellular enzyme activity following addition of DDA is due to cofactor leakage and not to enzyme denaturation. Whereas nongrowing cells remain intact in the presence of DDA, actively‐growing organisms undergo lysis, consistent with autolysin action. Significance and Impact of the Study: Cell lysis, not normally observed with membrane‐active antimicrobials, also occurs with cetrimide, and may be dependent on the alkyl chain length in these compounds. The action on growing cells parallels that of penicillin and daptomycin, which bears a decanoyl residue that penetrates the cell membrane, causing leakage and membrane depolarization.  相似文献   

18.
Snakin‐1 (SN‐1) is a cysteine‐rich plant antimicrobial peptide and the first purified member of the snakin family. SN‐1 shows potent activity against a wide range of microorganisms, and thus has great biotechnological potential as an antimicrobial agent. Here, we produced recombinant SN‐1 in Escherichia coli by a previously developed coexpression method using an aggregation‐prone partner protein. Our goal was to increase the productivity of SN‐1 via the enhanced formation of insoluble inclusion bodies in E. coli cells. The yield of SN‐1 by the coexpression method was better than that by direct expression in E. coli cells. After refolding and purification, we obtained several milligrams of functionally active SN‐1, the identity of which was verified by MALDI‐TOF MS and NMR studies. The purified recombinant SN‐1 showed effective antimicrobial activity against test organisms. Our studies indicate that the coexpression method using an aggregation‐prone partner protein can serve as a suitable expression system for the efficient production of functionally active SN‐1. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1520–1528, 2017  相似文献   

19.
D‐alanine is widely used in medicine, food, additives, cosmetics, and other consumer items. Esterase derived from Bacillus cereus WZZ001 exhibits high hydrolytic activity and stereoselectivity. In this study, we expressed the esterase gene in Escherichia coli BL21 (DE3). We analyzed the biocatalytic resolution of N‐acetyl‐DL‐alanine methyl ester by immobilized whole Ecoli BL21 (DE3) cells, which were prepared through embedding and cross‐linking. We analyzed biocatalytic resolution under the optimal conditions of pH of 7.0, temperature of 40°C and substrate concentration of at 700 mM with an enantiomeric excess of 99.99% and e.e.p of 99.50%. The immobilized recombinant Bcereus esterase Ecoli BL21 (DE3) cells exhibited excellent reusability and retained 86.04% of their initial activity after 15 cycles of repeated reactions. The immobilized cells are efficient and stable biocatalysts for the preparation of N‐acetyl‐D‐alanine methyl esters.  相似文献   

20.
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)‐anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C‐terminal hydrophobic residues. GPI‐anchored proteins are widespread cell sensors in mammals, especially during egg‐sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell‐cell communications in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号