首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   

2.
Excessive proteolytic degradation of fibronectin (FN) has been implicated in impaired tissue repair in chronic wounds. We previously reported two strategies for stabilizing FN against proteolytic degradation; the first conjugated polyethylene glycol (PEG) through cysteine residues and the second conjugated PEG chains of varying molecular weight on lysine residues. PEGylation of FN via lysine residues resulted in increased resistance to proteolysis with increasing PEG size, but an overall decrease in biological activity, as characterized by cell and gelatin binding. Our latest method to stabilize FN against proteolysis masks functional regions in the protein during lysine PEGylation. FN is PEGylated while it is bound to gelatin Sepharose beads with 2, 5, and 10 kDa PEG precursors. This results in partially PEGylated FN that is more stable than native FN and whose proteolytic stability increases with PEG molecular weight. Unlike completely PEGylated FN, partially PEGylated FN has cell adhesion, gelatin binding, and matrix assembly responses that are comparable to native FN. This is new evidence of how PEGylation variables can be used to stabilize FN while retaining its activity. The conjugates developed herein can be used to dissect molecular mechanisms mediated by FN stability and functionality, and address the problem of FN degradation in chronic wounds. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:277–288, 2015  相似文献   

3.
T cells migrating across extracellular matrix (ECM) barriers toward their target, the inflammatory site, should respond to chemoattractant cytokines and to the degradation of ECM by specific enzymes. In this study, we examined the effects of RANTES and ECM proteins treated with human leukocyte elastase on T cell activation and adhesion to the ECM. We found that human peripheral blood T cells briefly suspended with RANTES (0.1-100 ng/ml) had increased phosphorylation of their intracellular extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase involved in the activation of several intracellular downstream effector molecules implicated in cell adhesion and migration. Consequently, a small portion (12-20%) of the responding cells adhered to fibronectin (FN). However, when the T cells were exposed to RANTES in the presence of native immobilized FN, laminin, or collagen type I, ERK phosphorylation was partially inhibited, suggesting that this form of the ECM proteins can down-regulate RANTES-induced intracellular signaling. In contrast, when the T cells were exposed to RANTES in the presence of elastase-treated immobilized FN, but not to elastase-treated laminin, ERK phosphorylation was markedly increased. Furthermore, a large percentage (30%) of RANTES-activated T cells adhered to the enzymatically treated FN in a beta1 integrin-dependent fashion. Thus, while migrating along chemotactic gradients within the ECM, T cells can adapt their adhesive performance according to the level of cleavage induced by enzymes to the matrix.  相似文献   

4.
Mesangial cell apoptosis induced by a fibronectin fragment   总被引:1,自引:0,他引:1  
We previously showed that in passive Heymann nephritis (PHN) rats, a large quantity of fibronectin (FN) fragments containing the central cell-binding (CCB) domain and adjacent domains are generated in the kidney and excreted into urine (Nishizawa et al., Biol Pharm Bull 1998; 21: 429–433). To ascertain whether the FN fragments could affect the progression of PHN, we investigated the effect of a 150 K FN fragment containing the CCB and carboxyl-terminal heparin-binding (Hep 2) domains on cultured rat mesangial cells. When rat mesangial cells cultured on FN-coated plates were exposed to the 150 K FN fragment, some mesangial cells detached from the FN substrate and then underwent apoptosis as judged by nuclear and DNA fragmentations. The 150 K FN fragment competitively inhibited the mesangial cell adhesion to the FN substrate in a dose-dependent manner. Furthermore, gelatinzymography of the conditioned medium of mesangial cells showed that the 150 K FN fragment induced and/or poteintiated the extracellular matrix (ECM)-degrading proteinases including matrix metalloproteinases (MMPs) of mesangial cells. These results indicate that the 150 K FN fragment may elicit mesangial cell apoptosis by disrupting the mesangial cell adhesion through two distinct ways: the inhibition of mesangial cell adhesion and the ECM-degradation by the 150 K FN fragment-induced MMPs. Thus, FN fragments containing the CCB and adjacent domains generated in the kidneys of PHN rats may be involved in the evolution of the renal injury.  相似文献   

5.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300–1000 μg/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300–1000 μg/ml), which mimics a binding domain of LM, and α-lactalbumin (1–10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and α-lactalbumin inhibited cell migration 50%. Antibodies agasinst integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

6.
Fibronectin (FN) is a major component of the extracellular matrix which plays important roles in a variety of cellular processes including cell adhesion, and migration. The soluble cellular form of FN has a monomer molecular weight of approximately 250 kDa, and generally exists as a dimer of 500 kDa. We have isolated a different form of soluble FN from mouse breast cancer cell line SC115 conditioned medium (CM) and purified it to homogeneity as evidenced by both native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE. It still exhibits a monomeric form of about 250 kDa while its form in the CM is stable and soluble with an apparent tetrameric molecular weight in the range of 800-1000 kDa. This form of FN is a potent cell adhesion factor (AF) that induces adhesion to polystyrene, elongation, spreading, alignment or “track” formation, and migration of mouse erythroleukemia cells. Column fractions homogeneous for AF protein were able to stimulate 10% cell adhesion at concentrations of 23 ng/ml and 1.9 ng/cm2. Purified AF induced 50% cell adhesion at 94 ng/ml and 7.5 ng/cm2. AF also increased the migration of human aortic smooth muscle and vascular endothelial cells. However, this form of FN differs from other forms as it does not bind tightly to either gelatin or heparin. Studies of this AF should shed light on adhesion of cells to extracellular matrix molecules and on cell migration, both of which are critical in several biological processes such as wound healing, metastasis, matrix formation and structure, and organ development.  相似文献   

7.

Background

The interaction of ECM proteins is critical in determining the performance of materials used in biomedical applications such as tissue regeneration, implantable bionics and biosensing.

Methods

To improve our understanding of ECM protein–conducting polymer interactions, we have used Atomic Force Microscopy (AFM) to elucidate the interactions of fibronectin (FN) on polypyrrole (PPy) doped with different glycosaminoglycans.

Results

We were able to classify four main types of FN interactions, including those related to 1) non-specific adhesion, 2) protein unfolding and subsequent unbinding from the surface, 3) desorption and 4) interactions with no adhesion. FN adhesion on PPy/hyaluronic acid showed a significantly lower density of surface adhesion with the adhesion restricted to nodule structures, as opposed to their peripheries, of the polymer morphology. In contrast, PPy/chondroitin sulfate showed a significantly higher density of surface adhesion to the point where the distribution of adhesion effectively masked the topography. Through conductive AFM imaging, we found that the conductive regions correlated with regions of FN adhesion.

Conclusions

Given that the conductivity requires doping of the polymer, these findings suggest that FN adhesion is mediated by interactions with chondroitin sulfate and hyaluronic acid at the polymer surface and may be indicative of specific interactions due to contributions from electrostatic attraction between the FN and sulfate/anionic groups of the dopants.

General significance

This study demonstrates the ability of AFM to resolve the protein–conducting polymer interactions at the molecular and nanoscale level, which will be important for interfacing these polymer materials with biological systems. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

8.
Accumulating evidence indicates that the endometrial extracellular matrix (ECM) modulates trophoblast adhesion during mouse blastocyst implantation. In previous studies of adhesion-competent mouse blastocysts, we have demonstrated that integrin-mediated fibronectin (FN)-binding activity on the apical surface of trophoblast cells is initially low, but becomes strengthened after embryos are exposed to FN. In the present study, we have examined whether the ligand-induced upregulation of trophoblast adhesion to FN is mediated by integrin signaling. The strengthening of adhesion to FN required integrin ligation, which rapidly elevated cytoplasmic-free Ca(2+). Chelation of intracellular Ca(2+) using BAPTA-AM, or inhibition of the Ca(2+)-dependent proteins, protein kinase C or calmodulin, significantly attenuated the effect of FN on binding activity. Furthermore, direct elevation of cytoplasmic Ca(2+) levels with ionomycin upregulated FN-binding activity, demonstrating that Ca(2+) signaling is required and sufficient for strong adhesion to FN. Ca(2+) signaling may induce protein trafficking, a known requirement for ligand-induced upregulation of FN-binding activity. Indeed, intracellular vesicles accumulated in adhesion-competent blastocysts, but were absent after exposure to either FN or ionomycin. These findings suggest that, during implantation, contact between peri-implantation blastocysts and FN elevates intracellular Ca(2+), which strengthens trophoblast adhesion to ECM through protein redistribution.  相似文献   

9.
Latent transforming growth factor (TGF)-β binding proteins are extracellular matrix (ECM) proteins involved in the regulation of TGF-β sequestration and activation. In this study, we have identified binding domains in LTBP-4, which mediate matrix targeting and cell adhesion. LTBP-4 was found to possess heparin binding activity, especially in its N-terminal region. The C-terminal domain of LTBP-4 supported fibroblast adhesion, a property reduced by soluble heparin. In addition, we found that LTBP-4 binds directly to fibronectin (FN), which was indispensable for the matrix assembly of LTBP-4. The FN binding sites were also located in the N-terminal region. Interestingly, heparin was able to reduce the binding of LTBP-4 to FN. In fibroblast cultures, LTBP-4 colocalized first with FN and subsequently with fibrillin-1, pointing to a role for FN in the early assembly of LTBP-4. In FN −/− fibroblasts, LTBP-mediated ECM targeting was disturbed, resulting in increased TGF-β activity. These results revealed new molecular interactions which are evidently important for the ECM targeting, but which also are evidence of novel functions for LTBP-4 as an adhesion molecule.  相似文献   

10.
Embryonic hearts contain a homogeneous population of mesenchymal cells which migrate through an extensive extracellular matrix (ECM) to become the earliest progenitors of the cardiac valves. Since these cells normally migrate through an ECM containing several adhesion substrates, this study was undertaken to examine and compare three ECM binding mechanisms for mesenchymal cell migration in an in vitro model. Receptor mechanisms for the ECM glycoproteins fibronectin (FN) and laminin (LM) and the cell surface receptor galactosyltransferase (GalTase), which binds an uncharacterized ECM substrate, were compared. Primary cardiac explants from stage 17 chick embryos were cultured on three-dimensional collagen gels. Mesenchymal cell outgrowth was recorded every 24 hr and is reported as a percentage of control. Migration was perturbed using specific inhibitors for each of the three receptor mechanisms. These included the hexapeptide GRGDSP (300-1000 micrograms/ml), which mimics a cell binding domain of FN, the pentapeptide YIGSR (300-1000 micrograms/ml), which mimics a binding domain of LM, and alpha-lactalbumin (1-10 mg/ml), a protein modifier of GalTase activity. The functional role of these adhesion mechanisms was further tested using antibodies to avian integrin (JG22) and avian GalTase. While the FN-related peptide had no significant effect on cell migration it did produce a rounded cellular morphology. The LN-related peptide inhibited mesenchymal migration 70% and alpha-lactalbumin inhibited cell migration 50%. Antibodies against integrin and GalTase inhibited mesenchymal cell migration by 80 and 50%, respectively. The substrate for GalTase was demonstrated to be a single high molecular weight substrate which was not LM or FN. Control peptides, proteins and antibodies demonstrated the specificity of these effects. These data demonstrate that multiple adhesion mechanisms, including cell surface GalTase, are potentially functional during cardiac mesenchymal cell migration. The sensitivity of cell migration to the various inhibitors suggests that occupancy of specific ECM receptors can modulate the activity of other, unrelated, ECM adhesion mechanisms utilized by these cells.  相似文献   

11.
The extracellular matrix (ECM) provides structural support to cells and tissues and is involved in the regulation of various essential physiological processes, including neurite outgrowth. Most of the adhesive interactions between cells and ECM proteins are mediated by integrins. Integrins typically recognize short linear amino acid sequences in ECM proteins, one of the most common being Arginine-Glycine-Aspartate (RGD). The present study investigated neurite outgrowth and adhesion of identified molluscan neurons on a selection of substrates in vitro. Involvement of RGD binding sites in adhesion to the different substrates was investigated using soluble synthetic RGD peptides. The cells adhered to native (i.e., nondenatured) laminin and type IV collagen, but not to native plasma fibronectin. Denaturation of fibronectin dramatically enhanced cell adhesion. Only the adhesion to denatured fibronectin was inhibited by RGD peptides, indicating that denaturation uncovers a RGD binding site in the protein. Laminin as well as denatured fibronectin, but not type IV collagen, induced neurite outgrowth from a percentage of the RPA neurons. These results demonstrate that molluscan neurons can attach to various substrates using both RGD-dependent and RGD-independent adhesion mechanisms. This suggests that at least two different cell adhesion receptors, possibly belonging to the integrin family, are expressed in these neurons. Moreover, the results show that vertebrate ECM proteins can induce outgrowth from these neurons, suggesting that the mechanisms involved in adhesion as well as outgrowth promoting are evolutionarily well conserved. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 37–52, 1998  相似文献   

12.
Lymphocytes accumulate within the extracellular matrix (ECM) of tumor, wound, or inflammatory tissues. These tissues are largely comprised of polymerized adhesion proteins such as fibrin and fibronectin or their fragments. Nonactivated lymphoid cells attach preferentially to polymerized ECM proteins yet are unable to attach to monomeric forms or fragments of these proteins without previous activation. This adhesion event depends on the appropriate spacing of integrin adhesion sites. Adhesion of nonactivated lymphoid cells to polymeric ECM components results in activation of the antigen receptor-associated Syk kinase that accumulates in adhesion-promoting podosomes. In fact, activation of Syk by antigen or agonists, as well as expression of an activated Syk mutant in lymphoid cells, facilitates their adhesion to monomeric ECM proteins or their fragments. These results reveal a cooperative interaction between signals emanating from integrins and antigen receptors that can serve to regulate stable lymphoid cell adhesion and retention within a remodeling ECM.  相似文献   

13.
We report that dermatopontin (DP), an abundant dermal extracellular matrix protein, is found in the fibrin clot and in the wound fluid, which comprise the provisional matrix at the initial stage of wound healing. DP was also found in the serum but at a lower concentration than that in wound fluid. DP co-localized with both fibrin and fibronectin on fibrin fibers and interacted with both proteins. Both normal fibroblast and HT1080 cell adhesion to the fibrin-fibronectin matrix were dose-dependently enhanced by DP, and the adhesion was mediated by α5β1 integrin. The cytoskeleton was more organized in the cells that adhered to the fibrin-fibronectin-DP complex. When incubated with DP, fibronectin formed an insoluble complex of fibronectin fibrils as visualized by electron microscopy. The interacting sites of fibronectin with DP were the first, thirteenth, and fourteenth type III repeats (III(1), III(13), and III(14)), with III(13) and III(14) assumed to be the major sites. The interaction between III(2-3) and III(12-14) was inhibited by DP, whereas the interaction between I(1-5) and III(12-14) was specifically and strongly enhanced by DP. Because the interaction between III(2-3) and III(12-14) is involved in forming a globular conformation of fibronectin, and that between I(1-5) and III(12-14) is required for forming fibronectin fibrils, DP promotes fibronectin fibril formation probably by changing the fibronectin conformation. These results suggest that DP has an accelerating role in fibroblast cell adhesion to the provisional matrix in the initial stage of wound healing.  相似文献   

14.
The human multipotential hematopoietic cell line K562 expresses fibronectin receptor (FNR) subunits of 160 kDa (alpha chain) and 120 kDa (beta chain). Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) led to reduced binding of K562 to immobilized fibronectin (FN), although treated cells expressed 10-fold more cell surface FNR than untreated cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis confirmed this and showed altered electrophoretic mobilities of FNR subunits from TPA-treated cells. TPA treatment affected N-linked glycosylation, as tunicamycin treatment of K562 cells abolished differences in FNR mobility. Sialidase treatment of FNR immunoprecipitates minimized and sialidase treatment of intact cells eliminated these mobility differences between subunits from control and TPA-treated cells. Reduced sialylation of FNR from TPA-treated cells was further demonstrated by chromatography with bead-coupled lectins and by the greater negative charge of untreated K562 FNR subunits in two-dimensional isoelectric focusing-polyacrylamide gel electrophoresis. A relationship between reduced FNR sialylation and reduced FN binding was suggested by adhesion assays of sialidase-treated K562 which showed that desialylation of cell surface FNR was associated with decreased cell adhesion. Thus, TPA treatment reduces the function, increases the expression, and alters the structure of K562 FNR, and these changes appear to involve FNR sialylation.  相似文献   

15.
The adhesion of Balb/c 3T12 cells to fibronectin (FN) and to denatured (DC) or native (NC) collagen is differentially sensitive to divalent cations and to sodium azide. Short-time adhesion (10 min) to FN requires either Mg2+ or Mn2+, whereas only Mn2+ stimulates attachment to DC and NC. Azide treatment only slightly affects adhesion of cells to FN, but strongly inhibits cell attachment to DC and NC. Attachment to any of these substrata is unaffected by monensin and by treatment of the cells with an intracellular fraction, making unlikely the possibility that molecules released by secretion or cell lysis participate in the adhesive process. Soluble collagen inhibits the adhesion of cells to DC and NC, but does not affect adhesion to FN. Finally, rabbit antiserum against collagen binding proteins inhibits cell attachment to NC and DC; the cells, however, attach normally to FN in presence of this antiserum. Taken together, our results support the view that 3T12 cells attach directly to native or denatured collagens and that FN is not required for this process.  相似文献   

16.
17.
We have analyzed the effects of latent TGF-beta binding protein 2 (LTBP-2) and its fragments on lung fibroblast adhesion. Quantitative cell adhesion assays indicated that fibroblasts do not adhere to full-length LTBP-2. Interestingly, LTBP-2 had dominant disrupting effects on the morphology of fibroblasts adhering to fibronectin (FN). Fibroblasts plated on LTBP-2 and FN substratum exhibited less adherent morphology and displayed clearly decreased actin stress fibers than cells plated on FN. These cells formed, instead, extensive membrane ruffles. LTBP-2 had no effects on cells adhering to collagen type I. Fibroblasts adhered weakly to the NH2-terminal fragment of LTBP-2. Unlike FN, this fragment did not augment actin stress fiber formation. Interestingly, the adhesion-mediating and cytoskeleton-disrupting effects were localized to the same NH2-terminal proline-rich region of LTBP-2. LTBP-2 and its antiadhesive fragment bound to FN in vitro, and the antiadhesive fragment associated with the extracellular matrix FN fibrils. These observations reveal a potentially important role for LTBP-2 as an antiadhesive matrix component.  相似文献   

18.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

19.
Activation of the fibroblast growth factor receptor (FGFR) by neural cell adhesion molecule (NCAM) is essential for NCAM-mediated neurite outgrowth. Previous peptide studies have identified two regions in the fibronectin type 3 (FN3)-like domains of NCAM as being important for these activities. Here we report the crystal structure of the NCAM FN3 domain tandem, which reveals an acutely bent domain arrangement. Mutation of a non-conserved surface residue (M610R) led to a second crystal form showing a substantially different conformation. Thus, the FN3 domain linker is highly flexible, suggesting that it corresponds to the hinge seen in electron micrographs of NCAM. The two putative FGFR1-binding segments, one in each NCAM FN3 domain, are situated close to the domain interface. They form a contiguous patch in the more severely bent conformation but become separated upon straightening of the FN3 tandem, suggesting that conformational changes within NCAM may modulate FGFR1 activation. Surface plasmon resonance experiments demonstrated only a very weak interaction between the NCAM FN3 tandem and soluble FGFR1 proteins expressed in mammalian cells (dissociation constant > 100 μM). Thus, the NCAM-FGFR1 interaction at the cell surface is likely to depend upon avidity effects due to receptor clustering.  相似文献   

20.
The extracellular matrix (ECM) glycoprotein fibronectin (FN) requires the help of cells to assemble into a functional fibrillar matrix, which then orchestrates the assembly of other ECM proteins and promotes cell adhesion, migration and signalling. Fibrillogenesis is initiated and governed by cell surface integrins that bind to specific sites in the FN molecule. Recent studies identified novel integrin binding sites in FN that can also participate in FN fibril formation and in morphogenetic events during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号