首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Predicting population colonisations requires understanding how spatio‐temporal changes in density affect dispersal. Density can inform on fitness prospects, acting as a cue for either habitat quality, or competition over resources. However, when escaping competition, high local density should only increase emigration if lower‐density patches are available elsewhere. Few empirical studies on dispersal have considered the effects of density at the local and landscape scale simultaneously. To explore this, we analyze 5 years of individual‐based data from an experimental introduction of wild guppies Poecilia reticulata. Natal dispersal showed a decrease in local density dependence as density at the landscape level increased. Landscape density did not affect dispersal among adults, but local density‐dependent dispersal switched from negative (conspecific attraction) to positive (conspecific avoidance), as the colonisation progressed. This study demonstrates that densities at various scales interact to determine dispersal, and suggests that dispersal trade‐offs differ across life stages.  相似文献   

2.
Relative role of intrinsic density‐dependent factors (such as inter‐ and intraspecific competition, predation) and extrinsic density‐independent factors (environmental changes) in population dynamics is a key issue in ecology. Density‐dependent mechanisms are considered as important drivers of population dynamics in many vertebrate and insect species; however, their influence on the population dynamics of freshwater invertebrates is not clearly understood. In this study, I examined interannual variations in the abundance of the glacial relict amphipod Monoporeia affinis in a small subarctic lake based on long‐term (2002–2019) monitoring data. The results suggest that the population dynamics of amphipods in the lake is influenced by the combined effects of both intrinsic and extrinsic factors. The reproductive success of amphipod cohorts was inversely related to its initial abundance, indicating it is influenced by density‐dependent factors. Maffinis recruitment was negatively correlated with population density and near‐bottom temperature but positively correlated with food availability, which is defined as the concentration of chlorophyll a. Multiple regression with chlorophyll, temperature, and abundance of parent cohort as independent factors explained about 80% of the variation in the reproductive success of amphipods. The negative correlation between amphipod recruitment and water temperature indicates that the current climate conditions adversely affect the populations of glacial relict amphipods even in cold‐water lakes of the subarctic zone. Results of this study can be useful in environmental assessments to separate population oscillations connected with density‐dependent mechanisms from human‐mediated changes.  相似文献   

3.
1. Density‐dependent growth has been widely reported in freshwater fishes, but the ontogenetic evolution of competition and its subsequent effects on growth through a life span remains unclear. 2. Patterns of competition can be described by integrating population abundance data with habitat‐modelling results. Weighted usable area (WUA; m2 WUA ha?1) curves are obtained for each flow value and are then coupled with demographic data to obtain the occupancy rates (trout m?2 WUA, the density of a given age class related to its suitable habitat) of the WUA for every age class, year and site. 3. We examined a long‐term data series searching for temporal variation in the influence of habitat occupancy rate on the growth of brown trout Salmo trutta. We tested whether (i) mean cohort mass (mean mass of the cohort during the first 3 years of life) is affected by the occupancy rate experienced across a life span; and (ii) the occupancy rate experienced at different ages influenced mean body size. 4. We observed a consistent negative power relationship between average cohort mass and mean occupancy rate through a life span, indicating that stronger cohorts were related to a reduced growth, with likely consequences for individual fitness. 5. The effects of occupancy rate on size‐at‐age were mainly detected in the size attained at the second year of life, but they were because of the competition at different times. Thus, the level of competition varied through ontogeny, in some of the rivers affecting growth since the first year of life, whereas in most of the rivers the main effects on body size resulted from the competition during the second year of life. 6. Occupancy rate appears more appropriate than density for assessing the occurrence of habitat competition in freshwater fishes, since it encompasses the differences in quantity and quality of suitable habitat for each age class. 7. Our study highlights the importance of density‐dependent growth as a key process in the dynamics of brown trout populations, its temporal variation depending on the temporal changes of density and the variation of competition associated with the habitat capacity for each life stage.  相似文献   

4.
1. Density dependence may act at several stages in an organisms life-cycle (e.g. on mortality, fecundity, etc.), but not all density-dependent processes necessarily regulate population size. In this paper I use a density manipulation experiment to determine the effects of density on the transition rates between different size classes of the clonal zoanthid Palythoa caesia Dana 1846. I then formulate a density-dependent matrix model of population dynamics of Palythoa , and perform a series of sensitivity analyses on the model to determine at what stage in the life-cycle regulation acts.
2. Seven of the 16 transition probabilities decreased with density, most of them being shrinkage (due to loss of tissue or fission) and stasis (the self–self transition) of medium and large colonies. The only probability to increase was for the stasis of large colonies. Recruitment was quadratically dependent on density, peaking at intermediate densities.
3. Equilibrium cover in the model was 84% and was reached in ≈40 years. To determine which density-dependent transitions were involved in population regulation, the strength of density dependence was varied in each independently. This sensitivity analysis showed that only changes in the probabilities of large colonies remaining large and producing medium colonies, were regulating.
4. These results suggest that regulation is primarily acting on fission of large colonies to produce intermediate-sized colonies, in combination with size specific growth rates. Fission rates decrease greatly with density, resulting in a greater proportion of large colonies at high densities and large colonies grow more slowly than small. Overall, this behaviour is very similar to that of clonal plants which have a phalanx type life history.  相似文献   

5.
Understanding population change is essential for conservation of imperiled species, such as amphibians. Worldwide amphibian declines have provided an impetus for investigating their population dynamics, which can involve both extrinsic (density‐independent) and intrinsic (density‐dependent) drivers acting differentially across multiple life stages or age classes. In this study, we examined the population dynamics of the endangered Barton Springs Salamander (Eurycea sosorum) using data from a long‐term monitoring program. We were interested in understanding both the potential environmental drivers (density‐independent factors) and demographic factors (interactions among size classes, negative density dependence) to better inform conservation and management activities. We used data from three different monitoring regimes and multivariate autoregressive state‐space models to quantify environmental effects (seasonality, discharge, algae, and sediment cover), intraspecific interactions among three size classes, and intra‐class density dependence. Results from our primary data set revealed similar patterns among sites and size classes and were corroborated by our out‐of‐sample data. Cross‐correlation analysis showed juvenile abundance was most strongly correlated with a 9‐month lag in aquifer discharge, which we suspect is related to inputs of organic carbon into the aquifer. However, sedimentation limited juvenile abundance at the surface, emphasizing the importance of continued sediment management. Recruitment from juveniles to the sub‐adult size class was evident, but negative density‐dependent feedback ultimately regulated each size class. Negative density dependence may be an encouraging sign for the conservation of E. sosorum because populations that can reach carrying capacity are less likely to go extinct compared to unregulated populations far below their carrying capacity. However, periodic population declines coupled with apparent migration into the aquifer complicate assessments of species status. Although both density‐dependent and density‐independent drivers of population change are not always apparent in time series of animal populations, both have important implications for conservation and management of E. sosorum.  相似文献   

6.
7.
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density‐dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density‐dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange‐crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density‐dependent nest predation can underlie the relationship between population density and fecundity even in a high‐density, insular population where intraspecific competition should be strong.  相似文献   

8.
We analyzed the population dynamics of a burrowing owl (Athene cunicularia) colony at Mineta San Jose International Airport in San Jose, California, USA from 1990–2007. This colony was managed by using artificial burrows to reduce the occurrence of nesting owls along runways and within major airport improvement projects during the study period. We estimated annual reproduction in natural and artificial burrows and age-specific survival rates with mark–recapture techniques, and we estimated the relative contribution of these vital rates to population dynamics using a life table response experiment. The breeding colony showed 2 distinct periods of change: high population growth from 7 nesting pairs in 1991 to 40 pairs in 2002 and population decline to 17 pairs in 2007. Reproduction was highly variable: annual nesting success (pairs that raised ≥1 young) averaged 79% and ranged from 36% to 100%, whereas fecundity averaged 3.36 juveniles/pair and ranged from 1.43 juveniles/pair to 4.54 juveniles/pair. We estimated annual adult survival at 0.710 during the period of colony increase from 1996 to 2001 and 0.465 during decline from 2002 to 2007, but there was no change in annual survival of juveniles between the 2 time periods. Long-term population growth rate (λ) estimated from average vital rates was λa = 1.072 with λi = 1.288 during colony increase and λd = 0.921 (Δλ = 0.368) during decline. A life table response experiment showed that change in adult survival rate during increasing and declining phases explained more than twice the variation in growth rate than other vital rates. Our findings suggest that management and conservation of declining burrowing owl populations should address factors that influence adult survival. © 2011 The Wildlife Society.  相似文献   

9.
10.
Understanding the mechanisms that shape density‐dependent processes and population dynamics is often essential for species conservation. Two key mechanisms of density‐dependent reductions in reproductive performance are a limited access to foraging habitats (the habitat heterogeneity hypothesis) and territorial aggression towards conspecifics (the interference competition hypothesis) at high population densities. Disentangling the relative importance of these mechanisms within populations below their carrying capacity is important for the evaluation of the success of conservation measures. However, relatively few studies have attempted to quantify the relative importance of both mechanisms for the reproductive performance of a population. Many raptor populations are ideal model systems to investigate density‐dependent effects because they are currently recovering from human‐induced reductions during the last decades. Using a 14‐year dataset, we combined analyses of individual reproductive performance with a mechanistic population model to investigate early signs of density‐dependent regulation in a population of White‐tailed Eagles Haliaeetus albicilla in north‐east Germany. We found a negative effect of the number of neighbouring breeding pairs and a positive effect of water surface area (as a proxy for the availability of favourable foraging habitat) on breeding success and on the average number of nestlings. The mean nearest neighbour distance between breeding pairs has decreased, and the mean distance of nests to the nearest water body has increased over the last 14 years. Moreover, the population model indicates that even though the population is still growing, carrying capacity could be reached at about 500–950 territorial pairs. These results suggest that the selection of nesting sites is determined by a trade‐off between the distance to favourable foraging habitat and the distance to neighbouring breeding pairs. To avoid increasing competition with conspecifics, due to continued population growth, breeding pairs seem to select increasingly suboptimal habitats. Therefore, our results suggest that the habitat heterogeneity and interference competition hypotheses are not necessarily mutually exclusive as mechanisms of density‐dependent population regulation, but can determine the reproductive performance of a raptor population simultaneously. Thus, a future decline in breeding success does not necessarily reflect a decrease in habitat quality but may rather be a consequence of density‐dependent mechanisms. This information may be useful for the interpretation of population trends and for the development of appropriate management strategies for recovering raptor populations.  相似文献   

11.
Reliable estimates of effective population size are of central importance in population genetics and evolutionary biology. For populations that fluctuate in size, harmonic mean population size is commonly used as a proxy for (multi‐) generational effective size. This assumes no effects of density dependence on the ratio between effective and actual population size, which limits its potential application. Here, we introduce density dependence on vital rates in a demographic model of variance effective size. We derive an expression for the ratio in a density‐regulated population in a fluctuating environment. We show by simulations that yearly genetic drift is accurately predicted by our model, and not proportional to as assumed by the harmonic mean model, where N is the total population size of mature individuals. We find a negative relationship between and N. For a given N, the ratio depends on variance in reproductive success and the degree of resource limitation acting on the population growth rate. Finally, our model indicate that environmental stochasticity may affect not only through fluctuations in N, but also for a given N at a given time. Our results show that estimates of effective population size must include effects of density dependence and environmental stochasticity.  相似文献   

12.
13.
The ability of a species to adapt to environmental change is ultimately reflected in its vital rates – i.e. survival and reproductive success of individuals. Together, vital rates determine trends in numbers, commonly monitored using counts of species abundance. Rapid changes in abundance can give rise to concern, leading to calls for research into the biological mechanisms underlying variations in demography. For the northwest European population of Bewick's swan Cygnus columbianus bewickii, there have been major changes in the population trends recorded during nearly five decades of monitoring (1970–2016). The total number of birds increased to a maximum of ca 30 000 in 1995 and subsequently decreased to about 18 000 individuals in 2010. Such large fluctuation in population numbers is rare in long-lived species and understanding the drivers of this population change is crucial for species management and conservation. Using the integrated population model (IPM) framework, we analysed three demographic datasets in combination: population counts, capture–mark–resightings (CMR) and the proportion of juveniles in winter over a period of ~50 years. We found higher apparent breeding success in the years when the population had a positive growth rate compared to years with a negative growth rate. Moreover, no consistent trend in adult and yearling survival, and an increasing trend in juvenile survival was found. A transient life-table response experiment showed that apparent breeding success and adult survival contributed most to the variation in population trend. We explored possible explanatory variables for the different demographic rates and found a significant association between juvenile survival both with the water level in lakes during autumn migration, which affects food accessibility for the swans, and with summer temperatures. Such associations are important for understanding the dynamics of species with fluctuating population sizes, and thus for informing management and conservation decisions.  相似文献   

14.
Dynamics of populations may be synchronized at large spatial scales, indicating driving forces acting beyond local scales, but may also vary locally as a result of site‐specific conditions. Conservation measures for fragmented and declining populations may need to address such local effects to avoid local extinction before measures at large spatial scales become effective. To assess differences in local population dynamics, we aimed to determine the demographic drivers controlling population trends in three remaining populations of the Northern Wheatear Oenanthe oenanthe in the Netherlands, as a basis for conservation actions. An integrated population model (IPM) was fitted to field data collected in each site in 2007–2011 to estimate fecundity, survival and immigration. Sites were 40–120 km apart, yet first‐year recruits were observed to move between some of the sites, albeit rarely. All three populations were equally sensitive to changes in fecundity and first‐year survival. One population was less sensitive to adult survival but more sensitive to immigration. A life table response experiment suggested that differences in immigration were important determinants of differences in population growth between sites. Given the importance of immigration for local dynamics along with high philopatry, resulting in low exchange between sites, creating a metapopulation structure by improving connectivity and the protection of local populations are important for the conservation of these populations. Site‐specific conservation actions will therefore be efficient and, for the short term, we propose different site‐specific conservation actions.  相似文献   

15.
In semi‐arid climates, plant population dynamics are strongly influenced by the amount and temporal distribution of rainfall. We monitored a population of the tree species Cordia oncocalyx (Boraginaceae) for 24 months in the dry thorny woodland of semi‐arid northeastern Brazil, to investigate which life‐history traits allow this tree to be locally dominant. We used horizontal life tables and a Lefkovitch matrix and tested for relationships among demographic parameters of seedling, infant, juvenile, immature, virginile and reproductive ontogenetic stages with rainfall and canopy openness. Germination and recruitment occurred in the rainy months, and dry‐season mortality occurred only in seedlings (76% and 100%, first and second years, respectively) and infants (3% and 6%). Juveniles showed greater height growth under more open canopies (Spearman correlation coefficient = 0.24), suggesting that light availability influences growth. The population growth rate was λ = 1.0336, and the highest sensitivity occurred in the infant‐juvenile transition. Our results show light as a restrictive growth factor for plants in the juvenile stage and confirm the strong influence of rainfall on the dynamics of trees in a seasonally dry environment. The formation of a persistent seed bank with germination concentrated at the rainfall onset but spreading over the rainy season are strategies that hedge bets before establishment. The formation of a bank of infants, which can resume growth as soon as there is water, hedges bets after establishment. We attribute the positive population growth rate of Cordia oncocalyx to survival strategies allowing bet‐hedging both before and after establishment.  相似文献   

16.
17.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

18.
I constructed age‐structured populations by drawing numbers from a random numbers table, the constraints being that within a cohort each number be smaller than the preceding number (indicating that some individuals died between one year and the next) and that the first two‐digit number following 00 or 01 ending one cohort’s life be the number born into the next cohort. Populations constructed in this way showed prolonged existence with total population numbers fluctuating about a mean size and with long‐term growth rate (r) ≈ 0. The populations’ birth rates and growth rates and the females’ per capita fecundity decreased significantly with population size, whereas the death rates showed no significant relationship to population size. These results indicate that age‐structured populations can persist for long periods of time with long‐term growth rates of zero in the absence of negative‐feedback loops between a population’s present or prior density and its birth rate, growth rate, and fecundity, contrary to the assumption of density‐dependent regulation hypotheses. Thus, a long‐term growth rate of zero found in natural populations need not indicate that a population’s numbers are regulated by density‐dependent factors.  相似文献   

19.
Abstract In this work we report on the seasonal trends of abundances in terms of temperature exposure for four coexisting cladoceran species (Daphnia ambigua (Daphniidae), Ceriodaphnia dubia (Daphniidae), Diaphanosoma chilense (Sididae) and Moina micrura (Moinidae)) from a Chilean temperate lake. In order to compare the demographic response to temperature, we used life table experiments to parameterize matrix models for the four species at four fixed temperatures. From these life table response experiments we assessed the effects of temperature, species and their interaction on the variation in growth rate, as well as the contribution of juvenile survival, adult survival, fertility and age at first reproduction to the changes in growth rate. Our results showed interspecific differences in the effect of temperature on the growth rate. Species that present higher field abundance at lower temperature also exhibited, under controlled experiments, higher growth rates at low temperature and lower growth rates at high temperature, relative to the additive model. Conversely, species with higher abundances during the warmer seasons exhibited higher growth rates at higher experimental temperatures and lower growth rates at lower temperatures, relative to the additive model. The vital rates that most contributed to the variation in growth rate were age at first reproduction and fertility. Our growth rate estimates matched predictions of the metabolic ecology model.  相似文献   

20.
Rhesus macaques experimentally infected with Simian Immunodeficiency Virus (SIV) experience immunosuppression and often opportunistic infection. Among the most common opportunistic infections are rhesus cytomegalovirus (RhCMV), a ubiquitous betaherpesvirus that undergoes continuous low‐level replication in immunocompetent monkeys. Upon SIV‐mediated immunodeficiency, RhCMV reactivates and results in lesions in numerous organ systems including the nervous and reproductive systems. We report the first case of cytomegaloviral hypophysitis in a SIV‐immunocompromised rhesus macaque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号