首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overexpression of phosphatidylinositol phosphate 5-kinase (PIP5KI) isoforms alpha, beta, or gamma in CV-1 cells increased phosphatidylinositol 4,5-bisphosphate (PIP2) levels by 35, 180, and 0%, respectively. Endocytosis of transferrin receptors, association of AP-2 proteins with membranes, and the number of clathrin-coated pits at the plasma membrane increased when PIP2 increased. When expression of PIP5KIbeta was inhibited with small interference RNA in HeLa cells, expression of PIP5KIalpha was also reduced slightly, but PIP5KIgamma expression was increased. PIP2 levels and internalization of transferrin receptors dropped 50% in these cells; thus, PIP5KIgamma could not compensate for loss of PIP5KIbeta. When expression of PIP5KIalpha was reduced, expression of both PIP5KIbeta and PIP5KIgamma increased and PIP2 levels did not change. A similar increase of PIP5KIalpha and PIP5KIbeta occurred when PIP5KIgamma was inhibited. These results indicate that constitutive endocytosis in CV-1 and HeLa cells requires (and may be regulated by) PIP2 produced primarily by PIP5KIbeta.  相似文献   

2.
The kinetics of phosphatidylcholine-specific phospholipase D activated by phosphatidylinositol 4,5-bisphosphate (PIP2) and inhibition by neomycin were studied in an enzyme preparation partially purified from human hepatocarcinoma cell line. It was found that phospholipase D was marginally activated by phosphatidyl-4-phosphate (PIP) and phosphatidylethanolamine (PE). In contrast, it was considerably activated by PIP2 in different concentration of phosphatidylcholine (PC). Sphingomyelin (SM), lysophosphatidylcholine (LPC) and phosphatidylserine (PS) were neither substrates nor inhibitors of the phospholipase D. PIP2 induced an allosteric effect on phospholipase D and a negative cooperative effect with respect to phosphatidylcholine as indicated in the Lineweaver-Burk plot. In the absence of PIP2, a straight line was obtained, whereas a downward concave curve was observed in the presence of 25 M of PIP2. The Hill coefficient and the apparent Km of phosphatidylcholine in the presence of 25 M PIP2 were calculated to be 0.631 and 10.79 mM, respectively. PIP2 also increased the maximal velocity (Vmax) of the phospholipase D reaction, suggesting that the affinity of substrate to enzyme was decreased, and the turnover number of the enzyme (kcat) was increased by PIP2. The activation of phospholipase D by PIP2 was dose dependent up to 50 M of PIP2. The Ka of PIP2 was 15.8 mM. Neomycin, a polycationic glycoside, was shown to be an uncompetitive inhibitor of phospholipase D, and revealed the formation of a neomycin-PIP2 complex. The Ki of neomycin was estimated to be 8.7 mM.  相似文献   

3.
Thrombin stimulation of human blood platelets caused an extensive (up to 45%) and rapid (5-10 s) decline in endogenous phosphatidylinositol 4,5-bisphosphate (PI-P2). Thrombin initiated an equally rapid loss of membrane-bound Ca, as indicated by the decrease in fluorescence of chlortetracycline (CTC)-loaded platelets. PI-P2 breakdown also correlated with decreased CTC fluorescence upon use of other platelet stimuli: Arachidonate caused moderate and slow decreases in both PI-P2 and CTC fluorescence, while ionophore only induced minimal changes. Thrombin-induced decreases in PI-P2 content could account for release of sufficient membrane-bound Ca to raise cytoplasmic free [Ca2+] to 1-2 microM, supporting the hypothesis that PI-P2 represents the Ca-binding site involved in the stimulus-dependent increase in cytoplasmic Ca2+ evoked by receptor-ligand interactions.  相似文献   

4.
In rat cardiac sarcolemmal membranes a phosphoinositide-specific phospholipase C (PLC) was found to be present. The enzyme hydrolysed exogenous [3H-]phosphatidylinositol 4,5-biphosphate ([3H-]PtdIns(4,5)P 2) in an optimized assay mixture containing 15 leg SL protein, 100 mM NaCl, 1 mM free Ca2+,14 mM Na-cholate and 20 AM [3H-]PtdIns (4,5)P 2 (400–500 dpm/gm-l) in 30 mM HEPES-Tris buffer (pH 7.0). The average specific activity was 9.14±0.55 nmol-mg–1·2.5 min–1. The addition of Mg2+ to the assay mixture did not change PLC activity but increased the relative amounts of dephosphorylated inositol products. In the absence of Na+ and at a low Ca2+ concentration (0.3 M), Mg2+ also enhanced the intraSL levels of PtdIns4P and PtdIns, and, moreover, inhibited PLC activity (IC500.07 mM). PtdIns4P seemd to be a good substrate for the rat SL PLC (23.07 ± 1.57 nmol·mg–1·2.5 min–1) whereas PtdIns was hydrolysed at a very low rate (0.36 ± 0.08 nmol·mg–1·2.5 min–1). Unlike PtdIns(4,5)P 2, PLC-dependent PtdIns4P and PtdIns hydrolysis was not inhibited by Ca2+ concentrations over 1 mM. The possibility of distinct isozymes being responsible for the different hydrolytic activities is discussed. (Mol Cell Biochem116: 27–31, 1992).Abbreviations DAG sn-1,2-diacylglycerol - EGTA ethyleneglycol-O,O-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - InsP inositol monophosphate (unidentified isomer) - InsP 2 inositol bisphosphate (unidentified isomer) - InsP 3 inositol trisphosphate (unidentified isomer) - InsP x any inositol phosphate - PLC phospholipase C - PtdIns phosphatidylinositol - PtdIns(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - PtdIns4P phosphatidylinositol 4-monophosphate - SL sarcolemma  相似文献   

5.
Tetrodotoxin (TTX) is a potent toxin that specifically binds to voltage gated sodium channels. TTX binding physically blocks the flow of sodium ions through the channel, thereby preventing action potential (AP) generation and propagation. TTX has different binding affinities for different sodium channel isoforms. These differences are imparted by amino acid substitutions. Such substitutions confer TTX resistance to a variety of species. Tetrodotoxin resistance, however, may come at a cost to performance caused by changes in the biophysical properties and/or ion selectivity of the TTX resistant sodium channels. We here review the properties of sodium channels and their interaction with TTX, and look at some special examples of TTX resistant channels wherein the benefit of toxin resistance may be offset by other behavioral costs.  相似文献   

6.
Phosphatidylinositol 4,5 bisphosphate (PIP(2)) is widely implicated in cytoskeleton regulation, but the mechanisms by which PIP(2) effect cytoskeletal changes are not defined. We used recombinant adenovirus to infect CV1 cells with the mouse type I phosphatidylinositol phosphate 5-kinase alpha (PIP5KI), and identified the players that modulate the cytoskeleton in response to PIP(2) signaling. PIP5KI overexpression increased PIP(2) and reduced phosphatidylinositol 4 phosphate (PI4P) levels. It promoted robust stress-fiber formation in CV1 cells and blocked PDGF-induced membrane ruffling and nucleated actin assembly. Y-27632, a Rho-dependent serine/threonine protein kinase (ROCK) inhibitor, blocked stress-fiber formation and inhibited PIP(2) and PI4P synthesis in cells. However, Y-27632 had no effect on PIP(2) synthesis in lysates, although it inhibited PI4P synthesis. Thus, ROCK may regulate PIP(2) synthesis by controlling PI4P availability. PIP5KI overexpression decreased gelsolin, profilin, and capping protein binding to actin and increased that of ezrin. These changes can potentially account for the increased stress fiber and nonruffling phenotype. Our results establish the physiological role of PIP(2) in cytoskeletal regulation, clarify the relation between Rho, ROCK, and PIP(2) in the activation of stress-fiber formation, and identify the key players that modulate the actin cytoskeleton in response to PIP(2).  相似文献   

7.
Endothelin-1 (ET-1) disrupts insulin-regulated glucose transporter GLUT4 trafficking. Since the negative consequence of chronic ET-1 exposure appears to be independent of signal disturbance along the insulin receptor substrate-1/phosphatidylinositol (PI) 3-kinase (PI3K)/Akt-2 pathway of insulin action, we tested if ET-1 altered GLUT4 regulation engaged by osmotic shock, a PI3K-independent stimulus that mimics insulin action. Regulation of GLUT4 by hyperosmotic stress was impaired by ET-1. Because of the mutual disruption of both insulin- and hyperosmolarity-stimulated GLUT4 translocation, we tested whether shared signaling and/or key phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated cytoskeletal events of GLUT4 trafficking were targets of ET-1. Both insulin and hyperosmotic stress signaling to Cbl were impaired by ET-1. Also, plasma membrane PIP2 and cortical actin levels were reduced in cells exposed to ET-1. Exogenous PIP2, but not PI 3,4,5-bisphosphate, restored actin structure, Cbl activation, and GLUT4 translocation. These data show that ET-1-induced PIP2/actin disruption impairs GLUT4 trafficking elicited by insulin and hyperosmolarity. In addition to showing for the first time the important role of PIP2-regulated cytoskeletal events in GLUT4 regulation by stimuli other than insulin, these studies reveal a novel function of PIP2/actin structure in signal transduction.  相似文献   

8.
Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) rapidly accumulate, with the heat-induced PIP2 localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP2 occur within several minutes of temperature increases from ambient levels of 20–25°C to 35°C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP2 response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP2 phosphatase. Inhibitor experiments suggest that the PIP2 response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP2 increases. These results are discussed in the context of the diverse cellular roles played by PIP2 and PA, including regulation of ion channels and the cytoskeleton.  相似文献   

9.
Type I phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) catalyzes the phosphorylation of phosphatidylinositol 4 phosphate [PI(4)P] at carbon 5, producing phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2]. Phosphatidic acid (PA) activates PI4P5K in vitro and plays a central role in the activation of PIP5K pathways in vivo. This report demonstrates that actin fiber formation in murine fibroblasts involves PA activation of PIP5Ks and defines biochemical interactions between PA and the PIP5Ks. Inhibition of phospholipase D production of PA results in the loss of actin fibers. Overexpression of the beta isoform of the type I murine phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta) maintains actin fiber structure in the face of phospholipase D inhibition. PA activates mPIP5K-Ibeta by direct binding to mPIP5K-Ibeta through both electrostatic and hydrophobic interactions, with the fatty acid acyl chain length and degree of saturation acting as critical determinants of binding and activation. Furthermore, kinetic analysis suggests that phosphorylation of the PI(4)P substrate does not follow classical Michaelis-Menten kinetics. Instead, the kinetic data are consistent with a model in which mPIP5K-Ibeta initially binds to the lipid micelle and subsequently binds the PI(4)P substrate. In addition, the kinetics indicate substrate inhibition, suggesting that mPIP5K-Ibeta contains an inhibitory PI(4)P-binding site. These results suggest a model in which mPIP5K-Ibeta is surrounded by PI(4)P, but is unable to catalyze its conversion to PI(4,5)P2 unless PA is bound.  相似文献   

10.
The effect of glucose exposure on lipid associated calcium ionophoretic activity was measured in cultured neonatal rat pancreatic islet cells using two model systems. The first measured the ability of a lipid extract of islet cells to facilitate calcium transfer from an aqueous to organic phase and thus detected lipids which transfer calcium in the manner of authentic ionophores or which chelate the ion. In this system glucose stimulation was followed by an increase in total cell ionophoretic activity and a decrease in the activity associated with the plasma membrane. The second system measured the transfer of calcium across an artificial phospholipid membrane and detected authentic ionophoretic activity. In this model an increase in total ionophoretic activity was again seen following glucose but there was no change in the ionophoretic activity of a plasma membrane extract. The results indicate that the lipid modifications which accompany glucose-induced insulin release may alter cellular calcium stores by decreasing lipid bound calcium at the plasma membrane and increasing the capacity for calcium ionophoresis at intracellular sites.  相似文献   

11.
Scienderin is a Ca+-dependent actin filament severing protein present in chromaffin cells, platelets and a variety of secretory cells. It has been suggested that scinderin is involved in chromaffin cell F-actin dynamics and that this actin network controls the delivery of secretory vesicles to plasma membrane exocytotic sites. Moreover, scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated cells. Here we describe the molecular cloning, the nucleotide sequence and the expression of bovine chromaffin cell scinderin cDNA. The fusion protein obtained cross-reacts with native scinderin antibodies and binds phosphatidylserine (PS), phosphatidylinositol 4,5-bisphosphate (PIP2) and actin in a Ca+-dependent manner. Antibodies raised against the fusion protein produced the same cellular staining patterns for scinderin as anti-native scinderin. Nucleotide and amino acid sequence analysis indicate that scinderin has six domains each containing three internal sequence motifs, two actin and two PIP2 binding sites and has 63 and 53% homology with gelsolin and villin. These data indicate that scinderin is a novel member of the family of Ca2+-dependent F-actin severing proteins which includes gelsolin and villin.Abbreviations PIP2 phosphatidylinositol 4,5 bisphosphate - PKC protein kinase C - Sc scinderin - PS phosphatidyl serine - F-Sc scinderin fusion protein - PCR polymerase chain reaction  相似文献   

12.
Calcium waves are well-known hallmarks of egg activation that trigger resumption of the cell cycle and development of the embryo. These waves rapidly and efficiently assure that activation signals are transmitted to all regions of the egg. Although the mechanism by which the calcium wave propagates across an egg as large as that of Xenopus is not known, two models prevail. One model is a wave of calcium-induced calcium release (CICR) and the other is propagation by inositol-induced calcium release (IICR). IICR requires a wave of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, generating two second messengers, IP3, which then releases calcium and DAG, which activates protein kinase C (PKC). We show here that a wave of PKC-green fluorescent protein travels across the egg immediately following, and at the same velocity as, the calcium wave. This is the first example of a PKC wave in a vertebrate egg and supports the IICR model of wave propagation.  相似文献   

13.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIalpha PtdInsP kinase, or transient overexpression of Type Ialpha or IIbeta PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1 min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases.  相似文献   

14.
Regulation of the actin cytoskeleton by PIP2 in cytokinesis   总被引:6,自引:0,他引:6  
Cytokinesis is a sequential process that occurs in three phases: assembly of the cytokinetic apparatus, furrow progression and fission (abscission) of the newly formed daughter cells. The ingression of the cleavage furrow is dependent on the constriction of an equatorial actomyosin ring in many cell types. Recent studies have demonstrated that this structure is highly dynamic and undergoes active polymerization and depolymerization throughout the furrowing process. Despite much progress in the identification of contractile ring components, little is known regarding the mechanism of its assembly and structural rearrangements. PIP2 (phosphatidylinositol 4,5-bisphosphate) is a critical regulator of actin dynamics and plays an essential role in cell motility and adhesion. Recent studies have indicated that an elevation of PIP2 at the cleavage furrow is a critical event for furrow stability. In this review we discuss the role of PIP2-mediated signalling in the structural maintenance of the contractile ring and furrow progression. In addition, we address the role of other phosphoinositides, PI(4)P (phosphatidylinositol 4-phosphate) and PIP3 (phosphatidylinositol 3,4,5-triphosphate) in these processes.  相似文献   

15.
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 M concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLC, PLC, and PLC) after FP brain injury.  相似文献   

16.
Protein kinase C-epsilon (epsilonPKC) induces neurite outgrowth in neuroblastoma cells but molecular mechanism of the epsilonPKC-induced neurite outgrowth is not fully understood. Therefore, we investigated the ability of phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding of epsilonPKC and its correlation with the neurite extension. We found that full length epsilonPKC bound to PIP(2) in a 12-omicron-tetradecanoylphorbol-13-acetate dependent manner, while the regulatory domain of epsilonPKC (epsilonRD) bound to PIP(2) without any stimulation. To identify the PIP(2) binding region, we made mutants lacking several regions from epsilonRD, and examined their PIP(2) binding activity. The mutants lacking variable region 1 (V1) bound to PIP(2) stronger than intact epsilonRD, while the mutants lacking pseudo-substrate or common region 1 (C1) lost the binding. The PIP(2) binding ability of the V3-deleted mutant was weakened. Those PIP(2) bindings of epsilonPKC, epsilonRD and the mutants well correlated to their neurite induction ability. In addition, a chimera of pleckstrin homology domain of phospholipase Cdelta and the V3 region of epsilonPKC revealed that PIP(2) binding domain and the V3 region are sufficient for the neurite induction, and a first 16 amino acids in the V3 region was important for neurite extension. In conclusion, epsilonPKC directly binds to PIP(2) mainly through pseudo-substrate and common region 1, contributing to the neurite induction activity.  相似文献   

17.
Phosphatidylinositol 4,5-biphosphate (PIP2) has been implicated in a variety of cellular processes, including synaptic vesicle recycling. However, little is known about the spatial distribution of this phospholipid in neurons and its dynamics. In this study, we have focused on these questions by transiently expressing the phospholipase C (PLC)-delta1 pleckstrin homology (PH) domain fused to green fluorescent protein (GFP) in cultured hippocampal neurons. This PH domain binds specifically and with high affinity to PIP2. Live confocal imaging revealed that in resting cells, PH-GFP is localized predominantly on the plasma membrane. Interestingly, no association of PH-GFP with synaptic vesicles in quiescent neurons was observed, indicating the absence of detectable PIP2 on mature synaptic vesicles. Electrical stimulation of hippocampal neurons resulted in a decrease of the PH-GFP signal at the plasma membrane, most probably due to a PLC-mediated hydrolysis of PIP2. This was accompanied in the majority of presynaptic terminals by a marked increase in the cytoplasmic PH-GFP signal, localized most probably on freshly endocytosed membranes. Further investigation revealed that the increase in PH-GFP signal was dependent on the activation of N-methyl-D-aspartate receptors and the consequent production of nitric oxide (NO). Thus, PIP2 in the presynaptic terminal appears to be regulated by postsynaptic activity via a retrograde action of NO.  相似文献   

18.
Motility and phagocytosis are the two important processes that are intricately linked to survival and virulence potential of the protist parasite Entamoeba histolytica. These processes primarily rely on actin‐dependent pathways, and regulation of these pathways is critical for understanding the pathology of E. histolytica. Generally, phosphoinositides dynamics have not been explored in amoebic actin dynamics and particularly during phagocytosis in E. histolytica. We have explored the roles of PtdIns(4,5)P2 as well as the enzyme that produces this metabolite, EhPIPKI during phagocytosis. Immunofluorescence and live cell images showed enrichment of EhPIPKI in different stages of phagocytosis from initiation till the cups progressed towards closure. However, the enzyme was absent after phagosomes are pinched off from the membrane. Overexpression of a dominant negative mutant revealed a reduction in the formation of phagocytic cups and inhibition in the rate of engulfment of erythrocytes. Moreover, EhPIPKI binds directly to F and G‐actin unlike PIPKs from other organisms. PtdIns(4,5)P2, the product of the enzyme, also followed a similar distribution pattern during phagocytosis as determined by a GFP‐tagged PH‐domain from PLCδ, which specifically binds PtdIns(4,5)P2 in trophozoites. In summary, EhPIPKI regulates initiation of phagocytosis by regulating actin dynamics.  相似文献   

19.
When a membrane preparation, obtained by freezing and thawing nerve endings labeled by preincubation with 32pi, is incubated in the presence of millimolar Ca2+, there is a rapid and selective loss of label from the polyphosphoinositides and a concomitant increase in labeled inositol di- and triphosphates recovered. When the membranes are not prelabeled and are exposed to [gamma-32P]ATP under similar conditions, phosphatidate labeling is enhanced, indicating increased availability of diacylglycerol. These observations provide evidence for the presence of membrane-bound, Ca2+-stimulated phosphodiesterase activity (phospholipase C) acting on endogenous polyphosphoinositides. The implications of these findings are discussed in respect to the "phosphatidylinositol" cycle.  相似文献   

20.
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) produces phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2), a signaling phospholipid critical for various cellular processes in eukaryotes. The Arabidopsis thaliana genome encodes 11 PIP5K genes. Of these, three type B PIP5K genes, PIP5K7, PIP5K8, and PIP5K9, constitute a subgroup highly conserved in land plants, suggesting that they retain a critical function shared by land plants. In this study, we comprehensively investigated the biological functions of the PIP5K7–9 subgroup genes. Reporter gene analyses revealed their preferential expression in meristematic and vascular tissues. Their YFP-fusion proteins localized primarily to the plasma membrane in root meristem epidermal cells. We selected a mutant line that was considered to be null for each gene. Under normal growth conditions, neither single mutants nor multiple mutants of any combination exhibited noticeable phenotypic changes. However, stress conditions with mannitol or NaCl suppressed main root growth and reduced proximal root meristem size to a greater extent in the pip5k7pip5k8pip5k9 triple mutant than in the wild type. In root meristem epidermal cells of the triple mutant, where plasma membrane localization of the PtdIns(4,5)P2 marker P24Y is impaired to a large extent, brefeldin A body formation is retarded compared with the wild type under hyperosmotic stress. These results indicate that PIP5K7, PIP5K8, and PIP5K9 are not required under normal growth conditions, but are redundantly involved in root growth adaptation to hyperosmotic conditions, possibly through the PtdIns(4,5)P2 function promoting plasma membrane recycling in root meristem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号