首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Sodium dodecyl sulfate (SDS) is a highly effective and widely used protein denaturant. We show that certain amphipathic cosolvents such as 2-methyl-2,4-pentanediol (MPD) can protect proteins from SDS denaturation, and in several cases can refold proteins from the SDS-denatured state. This cosolvent effect is observed with integral membrane proteins and soluble proteins from either the α-helical or the β-sheet structural classes. The SDS/MPD system can be used to study processes involving native protein states, and we demonstrate the reversible thermal denaturation of the outer membrane protein PagP in an SDS/MPD buffer. MPD and related cosolvents can modulate the denaturing properties of SDS, and we describe a simple and effective method to recover refolded, active protein from the SDS-denatured state.  相似文献   

2.
Brucella melitensis is a gram-negative bacteria known to cause brucellosis and to produce severe infections in humans. Whilst brucella's outer membrane proteins have been extensively studied due to their potential role as antigens or virulence factors, their function is still poorly understood at the structural level, as the 3D structure of Brucella β-barrel membrane proteins are still unknown. In this context, the B. melitensis trimeric Omp2a porin has been overexpressed and refolded in n-dodecyl-β-d-maltopyranoside. We here show that this refolding process is insensitive to urea but is temperature- and ionic strength-dependent. Reassembled species were characterized by fluorescence, size-exclusion chromatography and circular dichroism. A refolding mechanism is proposed, suggesting that Omp2a first refolds under a monomeric form and then self-associates into a trimeric state. This first complete in vitro refolding of a membrane protein from B. melitensis shall eventually lead to functional and 3D structure determination.  相似文献   

3.
The folding of a multi‐domain trimeric α‐helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two‐state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter‐subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate‐limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop, from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re‐association of the trimer might be the limiting factor to obtain folded wild‐type AcrB.  相似文献   

4.
目的:旨在建立耐低温革兰氏阴性菌外膜蛋白体外折叠体系,为膜蛋白合成耐低温机制提供理论基础。方法:以包涵体的形式在大肠杆菌中过量表达了来源于耐低温希瓦氏菌的OmpA同源外膜蛋白Omp74的全蛋白质和N端跨膜结构域,纯化包涵体后,用高浓度尿素或强阴离子表面活性剂溶液溶解包涵体,以非离子表面活性剂为折叠介质,建立该外膜蛋白的体外折叠体系,同时以大肠杆菌的OmpA作为对照进行了比较研究。结果:与OmpA相比,Omp74体外折叠受温度影响较小,低浓度的阴离子表面活性剂能促Omp74的折叠,但对OmpA的折叠没有影响;C端结构域抑制Omp74在表面活性剂中的折叠;Omp74在0.5%的月桂酰基麦芽糖苷(DDM)和0.4%的十二烷基肌氨酸钠的混合溶液中能达到接近100%的折叠效率。  相似文献   

5.
A new technique associating the detergent Sodium Dodecyl Sulphate (SDS) and an alcohol‐type co‐solvent has been set up, showing an unexpected efficiency to refold several types of soluble or membrane proteins. The present contribution deepens the fundamental knowledge on the phenomena underlying this process, considering the refolding of two model peptides featuring the main protein secondary structures: α‐helix and β‐sheet. Their refolding was monitored by fluorescence and circular dichroism, and it turns out that: (i) 100% recovery of the folded structure is observed for both peptides, (ii) the highest the SDS concentration, the more co‐solvent to be added to recover the peptides' native structures, (iii) a high alcohol concentration is required to alter the SDS denaturing properties, (iv) the co‐solvent performance relies on its specific lipophilic–hydrophilic balanced character, (v) the size of the micelle formed by the detergent does not enter the process critical parameters, and (vi) increasing the salt concentration up to 1 M NaCl has a beneficial impact on the process efficiency. These mechanistic aspects will help us to improve the method and extend its application. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The Omp21 protein from the proteobacterium Comamonas (Delftia) acidovorans belongs to the recently described beta8 family of outer membrane proteins, characterized by eight antiparallel beta-strands which form a beta-barrel. This family includes virulence proteins, OmpA and OmpX from Escherichia coli, and other related molecules. After we established an expression system, recombinant Omp21 was purified by Ni(2+) chelation affinity chromatography and refolded in situ while bound to resin. The native state of refolded protein was proven by FTIR spectroscopy and monitored with denaturing PAGE (heat modification). Both native and recombinant Omp21 were reconstituted in lipid membranes and crystallized two-dimensionally by controlled dialysis. Recombinant Omp21 crystallized as dimer and formed a p22(1)2(1) lattice with constants of a = 11.1 nm, b = 12.2 nm, gamma = 89.5 degrees. The 3-D structure of negatively stained, recombinant Omp21 was determined at a resolution of 1.8 nm by means of electron crystallography. Comparison with 3-D maps of OmpX and the transmembrane domain of OmpA revealed a high similarity between the mass distribution of exoplasmic loops of Omp21 and OmpA.  相似文献   

7.
Adhesin involved in diffuse adherence (AIDA) is an autotransporter protein that confers the diffuse adherence phenotype to certain diarrheagenic Escherichia coli strains. It consists of a 49 amino acid signal peptide, a 797 amino acid passenger domain, and a 440 amino acid beta-domain integrated in the outer membrane. The beta-domain consists of two parts: the beta(1)-domain, which is predicted to form two beta-strands on the bacterial cell surface, and the beta(2)-domain, which constitutes the transmembrane domain. We here present a detailed biophysical analysis of the AIDA beta-domain addressing its refolding properties and its different conformational states and their stability. We find that the beta(2)-domain in solution can fold only when the beta(1)-domain is present and only with 50% efficiency. However, 100% refolding of the beta(2)-domain, with or without the beta(1)-domain, can be achieved in the presence of a solid support. Folding can only take place above the cmc of the detergent used, but the refolded state is retained if diluted below the cmc, revealing a kinetic barrier to dissociation of the detergent molecules from the folded protein. Refolding attempts of the beta(2)-domain in the absence of a solid support result in the formation of an oligomeric misfolded state both in the absence and in the presence of detergent. Despite being misfolded, these states unfold cooperatively with a T(m) approximately 70 degrees C. The refolded protein in the nonionic detergent octylpolyoxyethylene (oPOE) can only be thermally unfolded in the presence of SDS. The linear relationship between SDS mole fraction and unfolding temperature, T(m), predicts a T(m) of 112.9 +/- 1.2 degrees C for the beta(2)-domain and 132.7 +/- 12.2 degrees C for the entire beta-domain in pure oPOE. Thus, the beta(1)-domain also stabilizes the beta(2)-domain. In conclusion, our data show that the in vitro refolding of the AIDA beta-domain is critically dependent on a solid support, suggesting that in vivo specific biological factors may assist in folding the protein correctly into the outer membrane to avoid the formation of stably misfolded conformations.  相似文献   

8.
Refolding of proteins at high concentrations often results in non‐productive aggregation. This study, through a unique combination of spectroscopic and chromatographic analyzes, provides biomolecular evidence to demonstrate the ability of Eudragit S‐100, a pH‐responsive polymer, to enhance refolding of denatured‐reduced lysozyme at high concentrations. The addition of Eudragit in the refolding buffer significantly increases lysozyme refolding yield to 75%, when dilution refolding was conducted at 1 mg/mL lysozyme. This study shows evidence of an electrostatic interaction between oppositely charged lysozyme and the Eudragit polymer during refolding. This ionic complexing of Eudragit and lysozyme appears to shield exposed hydrophobic residues of the lysozyme refolding intermediates, thus minimizing hydrophobic‐driven aggregation of the molecules. Importantly, results from this study show that the Eudragit‐lysozyme bioconjugation does not compromise refolded protein structure, and that the polymer can be readily dissociated from the protein by ion exchange chromatography. The strategy was also applied to refolding of TGF‐β1 and KGF‐2. © 2009 American Institute of Chemical Engineers Biotechnol. Prog. 2009  相似文献   

9.
Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2′‐O positions of the viral RNA cap by using S‐adenosyl‐l ‐methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by‐product S‐adenosyl‐l ‐homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM‐analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.  相似文献   

10.
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.  相似文献   

11.

Background  

Recently, we reported a unique approach to preserve the activity of some proteins in the presence of the denaturing agent, Sodium Dodecyl Sulfate (SDS). This was made possible by addition of the amphipathic solvent 2,4-Methyl-2-PentaneDiol (MPD), used as protecting but also as refolding agent for these proteins. Although the persistence of the protein activity in the SDS/MPD mixture was clearly established, preservation of their structure was only speculative until now.  相似文献   

12.
The role of pathologic auto‐antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is a highly controversial matter. As the use of animal models may enable to unravel the molecular mechanisms of the human disorder, numerous studies on multiple sclerosis are carried out using experimental autoimmune encephalomyelitis (EAE). In particular, the most extensively used EAE model is obtained by immunizing C57BL/6 mice with the immunodominant peptide MOG(35–55). In this scenario, we analyzed the anti‐MOG antibody response in this model using the recombinant refolded extracellular domain of the protein, MOG(1–117). To assess the presence of a B‐cell intramolecular epitope spreading mechanism, we tested also five synthetic peptides mapping the 1–117 sequence of MOG, including MOG(35–55). For this purpose, we cloned, expressed in Escherichia coli and on‐column refolded MOG(1–117), and we applied an optimized microwave‐assisted solid‐phase synthetic strategy to obtain the designed peptide sequences. Subsequently, we set up a solid‐phase immunoenzymatic assay testing both naïve and EAE mice sera and using MOG protein and peptides as antigenic probes. The results obtained disclose an intense IgG antibody response against both the recombinant protein and the immunizing peptide, while no response was observed against the other synthetic fragments, thus excluding the presence of an intramolecular epitope spreading mechanism. Furthermore, as the properly refolded recombinant probe is able to bind antibodies with greater efficiency compared with MOG(35–55), we hypothesize the presence of both linear and conformational epitopes on MOG(35–55) sequence. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Amphipols are short amphipathic polymers designed to stabilize membrane proteins in aqueous solutions in the absence of detergent. Bacteriorhodopsin (BR), a light-driven proton pump, has been denatured, either by direct solubilization of the purple membrane in sodium dodecylsulfate (SDS) solution or by a procedure that involves delipidation with organic solvent followed by transfer to SDS, and renatured in amphipol A8-35. The effect of different renaturation procedures and of the presence or absence of lipids and the cofactor retinal have been investigated. The resulting samples have been characterized by absorbance spectroscopy, size-exclusion chromatography, thermostability measurements, and determination of photocycle kinetics. Transfer to A8-35 can be achieved by SDS precipitation, dilution, or dialysis, the first route resulting in the highest yield of refolding. Functional BR can be refolded whether in the presence or absence of lipids, higher yields being achieved in their presence. Retinal is not required for the protein to refold, but it stabilizes the refolded form and, thereby, improves folding yields. Lipids are not required for BR to perform its complete photocycle, but their presence speeds up the return to the ground state. Taken together, these data indicate that a membrane or membrane-mimetic environment is not required for correct decoding of the chemical information contained in the sequence of BR; functional folding is possible even in the highly foreign environment of lipid-free amphipols. BR interactions with lipids, however, contribute to an effective photocycle.  相似文献   

14.
We established a 96‐well‐plate‐based refolding screening system using zeolite. In this system, protein denatured and solubilized with 6 M guanidine hydrochloride is adsorbed onto zeolite placed in a 96‐well plate. The refolding conditions can be tested by incubating the samples with refolding buffers under various conditions of pH, salts, and additives. In this study, we chose green fluorescent protein as the model protein. Green fluorescent protein was expressed as inclusion bodies, and we tested the effects of four pH conditions and six additives on its refolding. The results demonstrate that green fluorescent protein was more efficiently refolded with zeolite than with the conventional dilution method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
Apical membrane antigen 1 (AMA1) is a surface protein of Plasmodium sp. that plays a crucial role in forming moving junction (MJ) during the invasion of human red blood cells. The obligatory presence of AMA1 in the parasite lifecycle designates this protein as a potential vaccine candidate and an essential target for the development of novel peptide or protein therapeutics. However, due to multiple cysteine residues in the protein sequence, attaining the native fold with correct disulfide linkages during the refolding process after expression in bacteria has remained challenging for years. Although several approaches to obtain the refolded protein from bacterial expression have been reported previously, achieving high yield during refolding and proper functional validation of the expressed protein was lacking. We report here an improved method of refolding to obtain higher quantity of refolded protein. We have also validated the refolded protein's functional activity by evaluating the expressed AMA1 protein binding with a known inhibitory peptide, rhoptry neck protein 2 (RON2), using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC).  相似文献   

16.
Proteins of the Omp85 family chaperone the membrane insertion of β‐barrel‐shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear‐encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N‐terminal polypeptide transport‐associated (POTRA) domains and a C‐terminal membrane‐embedded β‐barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β‐barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75‐V, which is consistent with the phylogenetic clustering of P39 in the Toc75‐V rather than the Toc75‐III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75‐III, Toc75‐V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391–1401. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Production of correctly folded and biologically active proteins in Escherichia coli can be a challenging process. Frequently, proteins are recovered as insoluble inclusion bodies and need to be denatured and refolded into the correct structure. To address this, a refolding screening process based on a 96-well assay format supported by design of experiments (DOE) was developed for identification of optimal refolding conditions. After a first generic screen of 96 different refolding conditions the parameters that produced the best yield were further explored in a focused DOE-based screen. The refolding efficiency and the quality of the refolded protein were analyzed by RP-HPLC and SDS–PAGE. The results were analyzed by the DOE software to identify the optimal concentrations of the critical additives. The optimal refolding conditions suggested by DOE were verified in medium-scale refolding tests, which confirmed the reliability of the predictions. Finally, the refolded protein was purified and its biological activity was tested in vitro. The screen was applied for the refolding of Interleukin 17F (IL-17F), stromal-cell-derived factor-1 (SDF-1α/CXCL12), B cell-attracting chemokine 1 (BCA-1/CXCL13), granulocyte macrophage colony stimulating factor (GM-CSF) and the complement factor C5a. This procedure identified refolding conditions for all the tested proteins. For the proteins where refolding conditions were already available, the optimized conditions identified in the screening process increased the yields between 50% and 100%. Thus, the method described herein is a useful tool to determine the feasibility of refolding and to identify high-yield scalable refolding conditions optimized for each individual protein.  相似文献   

18.
Steps for the refolding of proteins from solubilized inclusion bodies or misfolded product often represent bottlenecks in process development, where optimal conditions are typically derived empirically. To expedite refolding optimization, microwell screening may be used to test multiple conditions in parallel. Fast, accurate, and reproducible assays are required for such screening processes, and the results derived must be representative of the process at full scale. This article demonstrates the use of these microscale techniques to evaluate the effects of a number of additives on the refolding of IGF‐1 from denatured inclusion bodies, using an established HPLC assay for this protein. Prior to this, microwell refolding was calibrated for scale‐up using hen egg‐white lysozyme (HEWL) as an initial model protein, allowing us to implement and compare several assays for protein refolding, including turbidity, enzyme activity, and chromatographic methods, and assess their use for microwell‐based experimentation. The impact of various microplate types upon protein binding and loss is also assessed. Solution mixing is a key factor in protein refolding, therefore we have characterized the effects of different methods of mixing in microwells in terms of their impact on protein refolding. Our results confirm the applicability and scalability of microwell screening for the development of protein refolding processes, and its potential for application to new inclusion body‐derived protein products. Biotechnol. Bioeng. 2009;103: 329–340. © 2008 Wiley Periodicals, Inc.  相似文献   

19.
Cyclin D3 is a regulatory protein associated in a variety of human tumors. Despite several studies involving Cyclin D1 and D2, there are few articles that investigate the role of Cyclin D3. Therefore, this study aimed to produce and characterize Cyclin D3 using the Escherichia coli expression system and a protein refolding protocol. The anionic detergent SDS was used to solubilize the protein, then the solution were kept at 4 °C to precipitate SDS. After removing the precipitate by centrifugation, the supernatant was applied to the Ni-NTA column to purify His- tagged Cyclin D3. The recombinant protein shown to be refolded in a denaturation study by fluorescence spectroscopy at increasing concentrations of guanidine hydrochloride. The protein secondary structure, evaluated by circular dichroism, is composed of 39 % α helix and 15 % β-strands. In addition, the study aimed to validate the refolding protocol used to obtain Cyclin D3 from E. coli inclusion bodies.  相似文献   

20.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号