首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.  相似文献   

2.

Background

Angiogenesis is important in physiological and pathological conditions, as blood vessels provide nutrients and oxygen needed for tissue growth and survival. Therefore, targeting angiogenesis is a prominent strategy in both tissue engineering and cancer treatment. However, not all of the approaches to promote or inhibit angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation. However, pre-clinical and clinical evidence shows these therapies often have limited effects. To improve therapeutic strategies, including targeting FGF and VEGF in combination, we need a quantitative understanding of the how the promoters combine to stimulate angiogenesis.

Results

In this study, we trained and validated a detailed mathematical model to quantitatively characterize the crosstalk of FGF and VEGF intracellular signaling. This signaling is initiated by FGF binding to the FGF receptor 1 (FGFR1) and heparan sulfate glycosaminoglycans (HSGAGs) or VEGF binding to VEGF receptor 2 (VEGFR2) to promote downstream signaling. The model focuses on FGF- and VEGF-induced mitogen-activated protein kinase (MAPK) signaling and phosphorylation of extracellular regulated kinase (ERK), which promotes cell proliferation. We apply the model to predict the dynamics of phosphorylated ERK (pERK) in response to the stimulation by FGF and VEGF individually and in combination. The model predicts that FGF and VEGF have differential effects on pERK. Additionally, since VEGFR2 upregulation has been observed in pathological conditions, we apply the model to investigate the effects of VEGFR2 density and trafficking parameters. The model predictions show that these parameters significantly influence the response to VEGF stimulation.

Conclusions

The model agrees with experimental data and is a framework to synthesize and quantitatively explain experimental studies. Ultimately, the model provides mechanistic insight into FGF and VEGF interactions needed to identify potential targets for pro- or anti-angiogenic therapies.
  相似文献   

3.
Aging population displays a much higher risk of peripheral arterial disease (PAD) possibly due to the higher susceptibility, poor prognosis, and fewer therapeutic options. This study was designed to examine the impact of combined multipotent adipose‐derived stromal cells (mADSCs) and sarpogrelate treatment on aging hindlimb ischemia and the mechanism of action involved. mADSCs (1.0 × 107) constitutively expressing enhanced green fluorescent protein (eGFP) or firefly luciferase (Fluc) reporter were engrafted into the hindlimb of aged Vegfr2‐luc transgenic or FVB/N mice subjected to unilateral femoral artery occlusion, followed by a further administration of sarpogrelate. Multimodality molecular imaging was employed to noninvasively evaluate mADSCs' survival and therapeutic efficacy against aging hindlimb ischemia. Aged Tg(Vegfr2‐luc) mice exhibited decreased inflammatory response, and downregulation of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor‐2 (VEGFR2) compared with young ones following hindlimb ischemia induction, resulting in angiogenesis insufficiency and decompensation for ischemia recovery. Engrafted mADSCs augmented inflammation‐induced angiogenesis to yield pro‐angiogenic/anti‐apoptotic effects partly via the VEGF/VEGFR2/mTOR/STAT3 pathway. Nonetheless, mADSCs displayed limited survival and efficacy following transplantation. Sarpogrelate treatment with mADSCs further upregulated mammalian target of rapamycin (mTOR)/STAT3 signal and modulated pro‐/anti‐inflammatory markers including IL‐1β/TNF‐α/IFN‐γ and IL‐6/IL‐10, which ultimately facilitated mADSCs' survival and therapeutic benefit in vivo. Sarpogrelate prevented mADSCs from hypoxia/reoxygenation‐induced cell death via a mTOR/STAT3‐dependent pathway in vitro. This study demonstrated a role of in vivo kinetics of VEGFR2 as a biomarker to evaluate cell‐derived therapeutic angiogenesis in aging. mADSCs and sarpogrelate synergistically restored impaired angiogenesis and inflammation modulatory capacity in aged hindlimb ischemic mice, indicating its therapeutic promise for PAD in the elderly.  相似文献   

4.
The effects and potential mechanisms of the vascular endothelial cell (EC)-enriched microRNA-15a (miR-15a) on angiogenesis remain unclear. Here, we show a novel finding that EC-selective miR-15a transgenic overexpression leads to reduced blood vessel formation and local blood flow perfusion in mouse hindlimbs at 1-3 weeks after hindlimb ischemia. Mechanistically, gain- or loss-of-miR-15a function by lentiviral infection in ECs significantly reduces or increases tube formation, cell migration, and cell differentiation, respectively. By FGF2 and VEGF 3'-UTR luciferase reporter assays, Real-time PCR, and immunoassays, we further identified that the miR-15a directly targets FGF2 and VEGF to facilitate its anti-angiogenic effects. Our data suggest that the miR-15a in ECs can significantly suppress cell-autonomous angiogenesis through direct inhibition of endogenous endothelial FGF2 and VEGF activities. Pharmacological modulation of miR-15a function may provide a new therapeutic strategy to intervene against angiogenesis in a variety of pathological conditions.  相似文献   

5.
Fibroblast growth factor (FGF) receptor 1 (FGFR1) protein was expressed as the long and short as well as some truncated forms in ovine fetoplacental artery ex vivo and in vitro. Upon FGF2 stimulation, both the long and short FGFR1s were tyrosine phosphorylated and the PI3K/AKT1 and ERK1/2 pathways were activated in a concentration- and time- dependent manner in ovine fetoplacental artery endothelial (oFPAE) cells. Blockade of the PI3K/AKT1 pathway attenuated FGF2-stimulated cell proliferation and migration as well as tube formation; blockade of the ERK1/2 pathway abolished FGF2-stimulated tube formation and partially inhibited cell proliferation and did not alter cell migration. Both AKT1 and ERK1/2 were co-fractionated with caveolin-1 and activated by FGF2 in the caveolae. Disruption of caveolae by methyl-β-cyclodextrin inhibited FGF2 activation of AKT1 and ERK1/2. FGFR1 was found in the caveolae where it physically binds to caveolin-1. FGF2 stimulated dissociation of FGFR1 from caveolin-1. Downregulation of caveolin-1 significantly attenuated the FGF2-induced activation of AKT1 and ERK1/2 and inhibited FGF2-induced cell proliferation, migration and tube formation in oFPAE cells. Pretreatment with a caveolin-1 scaffolding domain peptide to mimic caveolin-1 overexpression also inhibited these FGF2-induced angiogenic responses. These data demonstrate that caveolae function as a platform for regulating FGF2-induced angiogenesis through spatiotemporally compartmentalizing FGFR1 and the AKT1 and ERK1/2 signaling modules; the major caveolar structural protein caveolin-1 interacts with FGFR1 and paradoxically regulates FGF2-induced activation of PI3K/AKT1 and ERK1/2 pathways that coordinately regulate placental angiogenesis.  相似文献   

6.
Increased capillary shear stress induces angiogenesis in skeletal muscle, but the signaling mechanisms underlying this response are not known. We hypothesize that shear stress‐dependent activation of vascular endothelial growth factor receptor 2 (VEGFR2) causes p38 and ERK1/2 phosphorylation, which contribute to shear stress‐induced angiogenesis. Skeletal muscle microvascular endothelial cells were sheared (12 dynes/cm2, 0.5–24 h). VEGFR2‐Y1214 phosphorylation increased in response to elevated shear stress and VEGF stimulation. p38 and ERK1/2 phosphorylation increased at 2 h of shear stress but only p38 remained phosphorylated at 6 and 24 h of shear stress. VEGFR2 inhibition abrogated p38, but not ERK1/2 phosphorylation. VEGF production was increased in response to shear stress at 6 h, and this increased production was abolished by p38 inhibition. Male Sprague–Dawley rats were administered prazosin (50 mg/L drinking water, 1, 2, 4, or 7 days) to induce chronically elevated capillary shear stress in skeletal muscle. In some experiments, mini‐osmotic pumps were used to dispense p38 inhibitor SB203580 or its inactive analog SB202474, to the extensor digitorum longus (EDL) of control and prazosin‐treated rats. Immunostaining and Western blotting showed increases in p38 phosphorylation in capillaries from rats treated with prazosin for 2 days but returned to basal levels at 4 and 7 days. p38 inhibition abolished the increase in capillary to muscle fiber ratio seen after 7 days of prazosin treatment. Our data suggest that p38 activation is necessary for shear stress‐dependent angiogenesis. J. Cell. Physiol. 222:120–126, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.  相似文献   

9.
目的:通过观察糖尿病大鼠脑缺血后,脑组织内Rac1表达的变化及其对VEGF、SDF-1表达的影响,探讨不同血糖水平时Rac1对脑缺血后血管新生的影响机制。方法:腹腔注射链脲霉素制作糖尿病大鼠脑缺血模型,尾静脉注射Rac1抑制剂NSC23766,通过western blotting法检测脑组织中总Rac1、VEGF和SDF-1表达;通过GST-pulldown法检测脑组织中活性Rac1表达。结果:在糖尿病大鼠脑缺血模型中,VEGF和SDF-1的表达随着血糖水平的升高而下降;脑组织内Rac1蛋白表达随着血糖水平升高而减少;抑制Rac1活性后,脑组织中VEGF表达均下降但SDF-1的表达反而增加。结论:在糖尿病大鼠脑缺血模型中,高血糖可抑制脑组织Rac1、VEGF和SDF-1的水平,该抑制作用随着血糖升高而增加。抑制Rac1水平可抑制VEGF表达但并未抑制SDF-1水平,提示高血糖可能通过抑制Rac1导致VEGF表达下降,从而影响血管新生。  相似文献   

10.
11.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by binding to VEGF receptor 2 (VEGFR2) on endothelial cells (ECs). Downstream activation of the extracellular related kinases 1/2 (ERK1/2) is important for angiogenesis to proceed. Receptor internalization has been implicated in VEGFR2 signaling, but its role in the activation of ERK1/2 is unclear. To explore this question we utilized pitstop and dynasore, two small molecule inhibitors of endocytosis. First, we confirmed that both inhibitors block the internalization of VEGFR2 in ECs. We then stimulated ECs with VEGF in the presence and absence of the inhibitors and examined VEGFR2 signaling to ERK1/2. Activation of VEGFR2 and C-Raf still occurred in the presence of the inhibitors, whereas the activation of MEK1/2 and ERK1/2 was abrogated. Therefore, although internalization is not required for activation of either VEGFR2 or C-Raf in ECs stimulated with VEGF, internalization is necessary to activate the more distal kinases in the cascade. Importantly, inhibition of internalization also prevented activation of ERK1/2 when ECs were stimulated with other pro-angiogenic growth factors, namely fibroblast growth factor 2 and hepatocyte growth factor. In contrast, the same inhibitors did not block ERK1/2 activation in fibroblasts or cancer cells stimulated with growth factors. Finally, we show that these small molecule inhibitors of endocytosis block angiogenesis in vitro and in vivo. Therefore, receptor internalization may be a generic requirement for pro-angiogenic growth factors to activate ERK1/2 signaling in human ECs, and targeting receptor trafficking may present a therapeutic opportunity to block tumor angiogenesis.  相似文献   

12.
The relationships between eosinophils and adipose tissues are involved in metabolic homeostasis. Eotaxin is a chemokine with potent effects on eosinophil migration. To clarify the mechanisms of eotaxin expression in adipose tissues, we examined the effects of fibroblast growth factor‐2 (FGF‐2) and interleukin‐4 (IL‐4) stimulation on eotaxin expression in adipose tissue‐derived stromal cells (ASCs), a type of adipocyte progenitor, in vitro. ASCs expressed eotaxin‐1 and did not express eotaxin‐2 or ‐3. Eotaxin‐1 expression was increased in a concentration‐dependent manner following FGF‐2 treatment. Additionally, ASCs expressed FGF receptor‐1 (FGFR‐1) and did not express FGFR‐2, ‐3, or ‐4. Eotaxin‐1 expression was inhibited in cells treated with the FGFR tyrosine kinase inhibitor and extracellular signal‐regulated kinase (ERK) inhibitor U0126, even in the presence of FGF‐2. Moreover, eotaxin‐1 expression was synergistically enhanced by combined treatment with FGF‐2 and IL‐4 and inhibited in the presence of U0126. Eotaxin‐1 expression induced by FGF‐2 and IL‐4 was involved in ERK activation via FGFR‐1 in ASCs. Upregulation of eotaxin expression in adipose tissues could increase eosinophil migration, thereby inducing IL‐4 secretion and activation of alternative macrophages and improving glucose homeostasis. These findings provide insights into the mechanisms through which eotaxin mediates metabolic homeostasis in adipose tissues and eosinophils.  相似文献   

13.
14.
15.
We have recently provided evidence that transplantation of G-CSF mobilized peripheral blood mononuclear cells (M-PBMNCs) improves limb ischemia in diabetic patients. This method represents a simple, safe, effective, and novel therapeutic approach for diabetic ischemia. Here we investigated the mechanisms by which mobilized blood cells transplantation improves limb ischemia. Unilateral hindlimb ischemia was surgically induced in streptozotocin-induced diabetic nude mice, and they were intramuscularly injected 10(6) M-PBMNCs, or human umbilical vein endothelial cells (HUVECs), PBS controls. We compared their blood-flow restoration via laser Doppler perfusion image (LDPI), angiogenesis via histological determination of capillary density. Physiological and histological assessment revealed an acceleration of ischemia recovery and increase in capillary density with less apoptosis in M-PBMNCs group, compared with those in HUVECs and PBS groups. In vivo noninvasive imaging and immunofluorescence revealed the survival, migration, proliferation, differentiation, and incorporation of M-PBMNCs into foci of vessel networks. More angioblasts were from blood cells after mobilization, and they also produced a number of antiapoptotic and proagniogenic factors that promoted angiogenesis in vivo. M-PBMNCs and its conditioned medium augmented the vessel formation in matrigel plugs in vivo. Thus, transplantation of M-PBMNCs achieved therapeutic neovascularization via supply of abundant angioblasts and angiogenic factors.  相似文献   

16.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that extracellular Pi induces signal transduction in the target cells of FGF23 also and influences its signaling, utilizing a human embryonic kidney cell line HEK293. HEK293 cells expressed low levels of klotho, and treatment with a recombinant FGF23[R179Q], a proteolysis‐resistant mutant of FGF23, resulted in phosphorylation of ERK1/2 and induction of early growth response‐1 (EGR1) expression. Interestingly, increased extracellular Pi resulted in activation of the Raf/MEK/ERK pathway and expression of EGR1, which involved type III sodium/phosphate (Na+/Pi) cotransporter PiT‐1. Since the effects of an inhibitor of Na+/Pi cotransporter on FGF23 signaling suggested that the signaling triggered by increased extracellular Pi shares the same downstream cascade as FGF23 signaling, we further investigated their convergence point. Increasing the extracellular Pi concentration resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), as did treatment with FGF23. Knockdown of FGFR1 expression diminished the phosphorylation of both FRS2α and ERK1/2 induced by the Pi. Moreover, overexpression of FGFR1 rescued the decrease in Pi‐induced phosphorylation of ERK1/2 in the cells where the expression of PiT‐1 was knocked down. These results suggest that increased extracellular Pi triggers signal transduction via PiT‐1 and FGFR and influences FGF23 signaling in HEK293 cells. J. Cell. Biochem. 111: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Vascular endothelial growth factor (VEGF), an angiogenic factor induced by hypoxia, also exerts direct effects on neural tissues. VEGF up‐regulation after hypoxia coincides with expression of its two tyrosine kinase receptors Flt‐1(VEGFR‐1) and Flk‐1 (KDR/VEGFR‐2), which are the key mediators of physiological angiogenesis. We have recently shown that hypoxic‐preconditioning (PC) leading to tolerance to hypoxia–ischemia in neonatal piglet brain resulted in increased expression of VEGF. In this study, we used a hypoxic‐preconditioning model of ischemic tolerance to analyze the expression and cellular distribution of VEGF receptors and phosphorylation of cAMP‐response element‐binding protein (CREB) in newborn piglet brain. The response of Flt‐1 and Flk‐1 mRNA to PC alone was biphasic with peaks early (6 h) and late (1 week) after PC. The mRNA expression of Flt‐1 and Flk‐1 in piglets preconditioned 24 h prior to hypoxia–ischemia was significantly higher than non‐preconditioned piglets and remained up‐regulated up to 7 days. Furthermore, PC prior to hypoxia–ischemia significantly increased the protein levels of Flt‐1 and Flk‐1 compared with hypoxia–ischemia in a time‐dependent manner. Double‐immunolabeling indicated that both Flt‐1 and Flk‐1 are expressed in neurons and endothelial cells with a similar time course of expression following PC and that PC leads to the growth of new vessels. Finally, our data demonstrate that PC significantly phosphorylated and activated cAMP‐response element‐binding protein in nucleus. These results suggest that mechanism(s) initiated by PC can induce VEGF receptor up‐regulation in newborn brain and that VEGF–VEGF receptor‐coupled signal transduction pathways could contribute to the establishment of tolerance following hypoxia–ischemia.  相似文献   

18.
Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   

19.
The cellular distributions of the growth factors FGF-2 and VEGF, and their receptors FGFR1, FGFR2 and FGFR3, and VEGFR-2 respectively, were visualized by immunohistochemistry and light microscopy in sections of growing red deer antler. Both of these signalling systems were widely expressed in the integument and osteocartilaginous compartments. FGF-2 was found in the same cells as all three FGFRs, indicating that FGF signalling may be principally autocrine. The patterns of labelling for VEGF and its receptor were similar to those seen for FGF-2 and FGFR-3, in both compartments. Our data are consistent with the findings of others in suggesting that FGF-2 induces expression of VEGF, to stimulate and maintain high rates of neovascularisation and angiogenesis, thereby providing nutrients to both velvet and bone as they rapidly grow and develop. The presence of FGF and VEGF and their receptors in epithelial cells suggests that these signalling systems play a role in skin development, raising the possibility that one or both may be involved in the close coupling of the coordinated growth of the integument and osteocartilage of antler, a process which is poorly understood at present.  相似文献   

20.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号