首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Affinity precipitation using Z‐elastin‐like polypeptide‐functionalized E2 protein nanocages has been shown to be a promising alternative to Protein A chromatography for monoclonal antibody (mAb) purification. We have previously described a high‐yielding, affinity precipitation process capable of rapidly capturing mAbs from cell culture through spontaneous, multivalent crosslinking into large aggregates. To challenge the capabilities of this technology, nanocage affinity precipitation was investigated using four industrial mAbs (mAbs A–D) and one Fc fusion protein (Fc A) with diverse molecular properties. A molar binding ratio of 3:1 Z:mAb was sufficient to precipitate >95% mAb in solution for all molecules evaluated at ambient temperature without added salt. The effect of solution pH on aggregation kinetics was studied using a simplified two‐step model to investigate the protein interactions that occur during mAb–nanocage crosslinking and to determine the optimal solution pH for precipitation. After centrifugation, the pelleted mAb–nanocage complex remained insoluble and was capable of being washed at pH ≥ 5 and eluted with at pH < 4 with >90% mAb recovery for all molecules. The four mAbs and one Fc fusion were purified from cell culture using optimal process conditions, and >94% yield and >97% monomer content were obtained. mAb A–D purification resulted in a 99.9% reduction in host cell protein and >99.99% reduction in DNA from the cell culture fluids. Nanocage affinity precipitation was equivalent to or exceeded expected Protein A chromatography performance. This study highlights the benefits of nanoparticle crosslinking for enhanced affinity capture and presents a robust platform that can be applied to any target mAb or Fc‐containing proteins with minimal optimization of process parameters.  相似文献   

3.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

4.
5.
6.
Locating optimal protein precipitation conditions for complex biological feed materials is problematic. This article describes the application of a series of high‐throughput platforms for the rapid identification and selection of conditions for the precipitation of an IgG4 monoclonal antibody (mAb) from a complex feedstock using only microliter quantities of material. The approach uses 96‐microwell filter plates combined with high‐throughput analytical methods and a method for well volume determination for product quantification. The low material, time and resource requirements facilitated the use of a full factorial Design of Experiments (DoE) for the rapid investigation into how critical parameters impact the IgG4 precipitation. To aid the DoE, a set of preliminary range‐finding studies were conducted first. Data collected through this approach describing Polyethylene Glycol (PEG) precipitation of the IgG4 as a function of mAb concentration, precipitant concentration, and pH are presented. Response surface diagrams were used to explore interactions between parameters and to inform selection of the most favorable conditions for maximum yield and purification. PEG concentrations required for maximum yield and purity were dependant on the IgG4 concentration; however, concentrations of 14 to 20% w/v, pH 6.5, gave optimal levels of yield and purity. Application of the high‐throughput approach enabled 1,155 conditions to be examined with less than 1 g of material. The level of insights gained over such a short time frame is indicative of the power of microwell experimentation in allowing the rapid identification of appropriate processing conditions for key bioprocess operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
An IgG1 monoclonal antibody (MAB) was isolated from hybridoma culture supernatant by affinity precipitation with an Eudragit S-100-based heterobifunctional ligand. Affinity binding was performed in a homogeneous aqueous phase at pH 7.5 followed by precipitation of the bound affinity complex by lowering the pH to 4.8. After two washing steps, elution of specifically bound MAB was achieved by incubating the precipitate with 0.1 M glycine.HCl pH 2.5. The influence of elution volume and time on the recovery of active MAB and the overall purification factor were studied. The best conditions enabled the recovery of 50.2% of active MAB with a purification factor of 6.2. A further dialysis against 50 mM Tris.HCl pH 8.0 increased the activity yield and the purification factor to 68.4% and 8.3, respectively. This result showed that part of the antibody activity loss during affinity precipitation was due to a reversible inactivation process, being easily recovered after a refining dialysis step.  相似文献   

8.
9.
The use of high‐throughput screening (HTS) techniques has long been employed by the pharmaceutical industry to increase discovery rates for new drugs that could be useful for disease treatment, yet this technology has only been minimally applied in other applications such as in tissue regeneration. In this work, an assay for the osteogenic differentiation of human mesenchymal stem cells (hMSCs) was developed and used to screen a library of small molecules for their potential as either promoters or inhibitors of osteogenesis, based on levels of alkaline phosphatase activity and cellular viability. From a library of 1,040 molecules, 36 promoters, and 20 inhibitors were identified as hits based on statistical criteria. Osteopromoters from this library were further investigated using standard culture techniques and a wider range of outcomes to verify that these compounds drive cellular differentiation. Several hits led to some improvement in the expression of alkaline phosphatase, osteogenic gene expression, and matrix mineralization by hMSCs when compared to the standard dexamethasone supplemented media and one molecule was investigated in combination with a recently identified biodegradable and osteoconductive polymer. This work illustrates the ability of HTS to more rapidly identify potential molecules to control stem cell differentiation. Biotechnol. Bioeng. 2011; 108:163–174. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
In the last decade, high-throughput downstream process development techniques have entered the biopharmaceutical industry. As chromatography is the standard downstream purification method, several high-throughput chromatographic methods have been developed and applied including miniaturized chromatographic columns for utilization on liquid handling stations. These columns were used to setup a complete downstream process on a liquid handling station for the first time. In this article, a monoclonal antibody process was established in lab-scale and miniaturized afterwards. The scale-down methodology is presented and discussed. Liquid handling in miniaturized single and multicolumn processes was improved and applicability was demonstrated by volume balances. The challenges of absorption measurement are discussed and strategies were shown to improve volume balances and mass balances in 96-well microtiter plates. The feasibility of miniaturizing a complete downstream process was shown. In the future, analytical bottlenecks should be addressed to gain the full benefit from miniaturized complete process development.  相似文献   

11.
12.
With an increased number of applications in the field of the avidin‐biotin technology, the resulting demand for highly‐purified protein avidin has drawn our attention to the purification process of avidin that naturally occurs in chicken egg white. The high‐throughput process development (HTPD) methodology was exploited, in order to evaluate purification process alternatives to commonly used ion‐exchange chromatography. In a high‐throughput format, process parameters for aqueous two‐phase extraction, selective precipitation with salts and polyethylene glycol, and hydrophobic interaction and mixed‐mode column chromatography experiments were performed. The HTPD strategy was complemented by a high‐throughput tandem high‐performance liquid chromatography assay for protein quantification. Suitable conditions for the separation of avidin from the major impurities ovalbumin, ovomucoid, ovotransferrin, and lysozyme were identified in the screening experiments. By combination of polyethylene glycol precipitation with subsequent resolubilization and separation in a polyethylene glycol/sulfate/sodium chloride two‐phase system an avidin purity of 77% was obtained with a yield >90% while at the same time achieving a significant reduction of the process volume. The two‐phase extraction and precipitation results were largely confirmed in larger scale with scale‐up factors of 230 and 133, respectively. Seamless processing of the avidin enriched bottom phase was found feasible by using mixed‐mode chromatography. By gradient elution a final avidin purity of at least 97% and yield >90% was obtained in the elution pool. The presented identification of a new and beneficial alternative for the purification of the high value protein thus represents a successful implementation of HTPD for an industrially relevant purification task. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:957–973, 2015  相似文献   

13.
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene‐edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high‐throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high‐throughput quantitative real‐time (qPCR)‐based method. The qPCR‐based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild‐type and a gene‐edited mutant. We showed that the qPCR‐based method can accurately distinguish CRISPR/Cas9‐induced mutants from the wild‐type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR‐based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T0 transgenic plants. In a 384‐well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post‐polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T0 transgenic plants, which will be widely used in the area of plant gene editing.  相似文献   

14.
In biopharmaceutical process development, resin-based high throughput screening (HTS) is well known for overcoming experimental limitations by permitting automated parallel processing at miniaturized scale, which results in fast data generation and reduced feed consumption. For membrane adsorber (MA), HTS solutions have so far only been available to a partial extent. Three case studies were performed with the aim of aligning HTS applications for MAs with those established for column chromatography: Process parameter range determination, mechanistic modeling (MM), and scalability. In order to exploit the MA typically features, such as high mass transfer and easy scalability, for scalable high throughput process development, a scale-down device (SDD) for MA was developed. Its applicability is confirmed for a monoclonal antibody aggregate removal step. The first case study explores the experimental application of the SDD developed. It uses bind and elute mode and variations of pH and salt concentration to obtain process operation windows for ion-exchange MAs Sartobind® S and Q. In the second case study, we successfully developed a mechanistic model based on parameters obtained from the SDD–HTS setup. The results proved to validate the use of the SDD developed for parameter estimation and thus model-based process development. The third case study shows the transferability and scalability of data from the SDD–HTS setup using both a direct scale factor and MM. Both approaches show good applicability with a deviation below 20% in the prediction of 10% dynamic breakthrough capacity and reliable scale-up from 0.42 to 800 ml.  相似文献   

15.
16.
17.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

18.
Multi‐factorial experimentation is essential in understanding the link between mammalian cell culture conditions and the glycoprotein product of any biomanufacturing process. This understanding is increasingly demanded as bioprocess development is influenced by the Quality by Design paradigm. We have developed a system that allows hundreds of micro‐bioreactors to be run in parallel under controlled conditions, enabling factorial experiments of much larger scope than is possible with traditional systems. A high‐throughput analytics workflow was also developed using commercially available instruments to obtain product quality information for each cell culture condition. The micro‐bioreactor system was tested by executing a factorial experiment varying four process parameters: pH, dissolved oxygen, feed supplement rate, and reduced glutathione level. A total of 180 micro‐bioreactors were run for 2 weeks during this DOE experiment to assess this scaled down micro‐bioreactor system as a high‐throughput tool for process development. Online measurements of pH, dissolved oxygen, and optical density were complemented by offline measurements of glucose, viability, titer, and product quality. Model accuracy was assessed by regressing the micro‐bioreactor results with those obtained in conventional 3 L bioreactors. Excellent agreement was observed between the micro‐bioreactor and the bench‐top bioreactor. The micro‐bioreactor results were further analyzed to link parameter manipulations to process outcomes via leverage plots, and to examine the interactions between process parameters. The results show that feed supplement rate has a significant effect (P < 0.05) on all performance metrics with higher feed rates resulting in greater cell mass and product titer. Culture pH impacted terminal integrated viable cell concentration, titer and intact immunoglobulin G titer, with better results obtained at the lower pH set point. The results demonstrate that a micro‐scale system can be an excellent model of larger scale systems, while providing data sets broader and deeper than are available by traditional methods. Biotechnol. Bioeng. 2009; 104: 1107–1120. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Aqueous two‐phase systems (ATPSs) as separation technique have regained substantial interest from the biotech industry. Biopharmaceutical companies faced with increasing product titers and stiffening economic competition reconsider ATPS as an alternative to chromatography. As the implementation of an ATPS is material, time, and labor intensive, a miniaturized and automated screening process would be beneficial. In this article such a method, its statistical evaluation, and its application to a biopharmaceutical separation task are shown. To speed up early stage ATPS profiling an automated application of the cloud‐point method for binodal determination was developed. PEG4000–PO4 binodals were measured automatically and manually and were found to be identical within the experimental error. The ATPS screening procedure was applied to a model system and an industrial separation task. PEG4000–PO4 systems at a protein concentration of 0.75 mg/mL were used. The influence of pH, NaCl addition, and tie line length was investigated. Lysozyme as model protein, two monoclonal antibodies, and a host cell protein pool were used. The method was found to yield partition coefficients identical to manually determined values for lysozyme. The monoclonal antibodies were shifted from the bottom into the upper phase by addition of NaCl. This shift occurred at lower NaCl concentration when the pH of the system was closer to the pI of the distributed protein. Addition of NaCl, increase in PEG4000 concentration and pH led to significant loss of the mAb due to precipitation. Capacity limitations of these systems were thus demonstrated. The chosen model systems allowed a reduction of up to 50% HCP with a recovery of greater than 95% of the target proteins. As these values might not be industrially relevant when compared to current chromatographic procedures, the developed screening procedure allows a fast evaluation of more suitable and optimized ATPS system for a given task. Biotechnol. Bioeng. 2011; 108:69–81. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
We established a 96‐well‐plate‐based refolding screening system using zeolite. In this system, protein denatured and solubilized with 6 M guanidine hydrochloride is adsorbed onto zeolite placed in a 96‐well plate. The refolding conditions can be tested by incubating the samples with refolding buffers under various conditions of pH, salts, and additives. In this study, we chose green fluorescent protein as the model protein. Green fluorescent protein was expressed as inclusion bodies, and we tested the effects of four pH conditions and six additives on its refolding. The results demonstrate that green fluorescent protein was more efficiently refolded with zeolite than with the conventional dilution method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号