首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elicitor prepared from the cell walls of Penicillium citrinum induced multiple responses in Catharanthus roseus suspension cells, including rapid generation of nitric oxide (NO), sequentially followed by enhancement of catharanthine production by C. roseus cells. Elicitor-induced catharanthine biosynthesis was blocked by NO-specific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and nitric oxide synthase (NOS) inhibitor S,S-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU). PBITU also strongly inhibited elicitor-induced NO generation by C. roseus suspension cells. The inhibiting effect of PBITU on elicitor-induced catharanthine production was reversed by external application of NO via the NO-donor sodium nitroprusside. The results strongly suggested that NO, generated by NOS or NOS-like enzymes in C. roseus suspension cells when treated with the fungal elicitor, was essential for triggering catharanthine synthesis.  相似文献   

2.
3.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively.  相似文献   

4.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside (SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively.  相似文献   

5.
Elicitor, derived from the cell walls of Aspergillus niger, induced rapid generation of reactive oxygen intermediates (ROI), including superoxide anion (O2) and hydrogen peroxide (H2O2), sequentially followed by phenylalanine ammonia-lyase (PAL) activation and catharanthine biosynthesis in Catharanthus roseus suspension cells. The elicitor-induced PAL activation and catharanthine biosynthesis were blocked by NAD(P)H oxidase inhibitor, diphenylene iodonium (DPI). O2 generated by the reaction of xanthine/xanthine oxidase (X/XO) triggered PAL activation and catharanthine biosynthesis of C. roseus cells in the absence of elicitor and reversed the inhibitory effect of DPI on elicitor-induced PAL activation and catharanthine biosynthesis. External application of H2O2 and catalase had no effect on PAL activity and catharanthine contents of C. roseus cells. The results demonstrated a causal relationship between elicitor-induced oxidative burst and PAL activation in C. roseus suspension cells and suggested a sequence of signaling events from ROI production to PAL activation and catharanthine synthesis. Within this sequence, O2 rather than H2O2 appeared to trigger the subsequent reactions.  相似文献   

6.
Secondary metabolite accumulation and nitric oxide (NO) generation are two common responses of plant cells to fungal elicitors, and NO has been reported to play important roles in elicitor-induced secondary metabolite production. However, the source of elicitor-triggered NO generation in plant cells remains largely unknown. To investigate the origin of elicitor-triggered NO, we examined nitrate reductase (NR) activities and the expression levels of NIA1 and NIA2 genes of Camptotheca acuminata cells treated with PB90, a protein elicitor from Phytophthora boehmeriae. The data show that PB90 treatment stimulates NR activity and induces upregulation of NIA1 but does not affect NIA2 expression in the cells. Pretreatment of the cells with NR inhibitors tungstate and Gln abolishes not only the fungal elicitor-triggered NR activities but also the PB90-induced NO generation. Treatment of PB90 enhances camptothecin contents of the cells, suggesting that the fungal elicitor might stimulate camptothecin biosynthesis. Furthermore, application of tungstate and Gln suppresses the fungal elicitor-induced camptothecin accumulation of the cells and the suppression of NR inhibitors on PB90-induced camptothecin production can be reversed by NO via its donor sodium nitroprusside. Together, the results suggest that NIA1 is sensitive to PB90 and the fungal elicitor-induced upregulation of NIA1 may lead to higher NR activity. Furthermore, our data demonstrate that NR is involved in the fungal elicitor-triggered NO generation and the fungal elicitor induces camptothecin production of C. acuminata cells dependently on NR-mediated NO generation.  相似文献   

7.
8.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the −538 to −112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (−160 to −99) was identified as the major contributor to basal expression and another region (−99 to −37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the −572 to −37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light. Received: 2 February 1998 / Accepted: 5 March 1999  相似文献   

9.
Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.  相似文献   

10.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the ?538 to ?112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (?160 to ?99) was identified as the major contributor to basal expression and another region (?99 to ?37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the ?572 to ?37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light.  相似文献   

11.
A Catharanthus roseus cell line was selected that synthesised catharanthine exclusively under elicitation.From the first day of culture, treatment with very low concentrations of a Pythium extract did not alter the growth of the suspension but, within 24 hours, induced the synthesis of catharanthine and stimulated the production of ajmalicine. Kinetic analysis showed that serpentine then began to accumulate and that all of these effects lasted more than 7 days. Elicitation also induced changes in the cell/medium distribution of the alkaloids. Higher, although non-lethal, concentrations of the fungal elicitor were shown to impair alkaloid production. This cell line will serve as a model to study the conditions for the expression of catharanthine synthesis at the molecular level.Abbreviations gE glucose-equivalent - MS Murashige and Skoog medium - 2,4-D 2,4-Dichlorophenoxyacetic acid  相似文献   

12.
Higher plants constitute one of our most important natural resources, which provide not only foodstuffs, fibers, and woods, but also many chemicals, such as flavorings, dyes, and pharmaceuticals. Although plants are renewable resources, some species are b…  相似文献   

13.
14.
Exposure to ozone induced a rapid increase in the levels of the phytohormone abscisic acid (ABA) and sequentially followed by the enhancement of Taxol production in suspension cell cultures of Taxus chinensis. The observed increases in ABA and Taxol were dependent on the concentration of ozone applied to T. chinensis cell cultures. To examine the role of ABA in ozone‐induced Taxol production, we pretreated the cells with ABA biosynthesis inhibitor fluridone to abolish ozone‐triggered ABA generation and assayed the effect of fluridone on ozone‐induced Taxol production. The results showed that pretreatment of the cells with fluridone not only suppressed the ozone‐triggered ABA generation but also blocked the ozone‐induced Taxol production. Moreover, our data indicate that the effect of ABA on Taxol production of T. chinensis cell cultures is dose‐dependent. Interestingly, the suppression of fluridone on ozone‐induced Taxol production was reversed by exogenous application of low dose of ABA, although treatment of low dose ABA alone had no effect on Taxol production of the cells. Together, the data indicated that ozone was an efficient elicitor for improving Taxol production of plant cell cultures. Furthermore, we demonstrated that ABA played critical roles in ozone‐induced Taxol production of T. chinensis suspension cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
16.
17.
18.
Nitric oxide (NO), salicylic acid (SA), and reactive oxygen species (ROS) are important signal molecules that mediate plant resistance reactions and play important roles in secondary metabolism. To research the signal transduction pathway of the endophytic fungal elicitor from Fusarium sp. E5 promoting secondary metabolism in Euphorbia pekinensis suspension cells, the changes in NO, SA, ROS, and isoeuphpekinensin contents in the cells were investigated after elicitor addition to the cell suspension culture. The elicitor did not change H2O2 or O2 ? contents notably, whereas NO and SA contents were enhanced. Both the NO donator sodium nitroprusside (SNP) and SA enhanced isoeuphpekinensin content in the absence of the fungal elicitor, whereas the NO scavenger cPTIO and SA biosynthesis inhibitor cinnamic acid (CA) inhibited isoeuphpekinensin accumulation in the presence of the elicitor. In addition, cPTIO inhibited SA production induced by the fungal elicitor. CA did not inhibit NO production, but it significantly inhibited isoeuphpekinensin accumulation. The results demonstrated that in Euphorbia pekinensis suspension cells the endophytic fungal elicitor induced increased NO content and SA production, which promoted isoeuphpekinensin accumulation. ROS are clearly not involved in the endophytic fungus–host interaction signaling pathway.  相似文献   

19.
20.
Catharanthuse roseus is a well-known medicinal plant for its two valuable anticancer compounds: vinblastine and vincristine, which belongs to terpenoid indole alkaloids. Great efforts have been made to study the principles of its secondary metabolic pathways to regulate the alkaloids biosynthesis. In this article, different plant growth regulators were shortly applied to Catharanthus roseus plants during the blooming period to study their effects on the biosynthesis of vinblastine, vindoline and catharanthine. Salicylic acid and ethylene (ethephon) treatments resulted in a significant increase of vinblastine, vindoline and catharanthine while abscisic acid and gibberellic acid had a strongly negative influence on the accumulation of the three important alkaloids. Methyl jasmonate showed no great effect on the production of these valuable alkaloids. Chlormequat chloride highly enhanced the accumulation of vinblastine but greatly decreased the contents of vindoline and catharanthine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号