首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Akt is a crucial phosphoinositide 3-kinase (PI(3)K) effector that regulates cell proliferation and survival. PI(3)K-generated signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, direct Akt plasma membrane engagement. Pathological Akt plasma membrane association promotes oncogenesis. PtdIns(3,4)P2 is degraded by inositol polyphosphate 4-phosphatase-1 (4-ptase-1) forming PtdIns(3)P; however, the role of 4-ptase-1 in regulating the activation and function of Akt is unclear. In mouse embryonic fibroblasts lacking 4-ptase-1 (−/−MEFs), the Akt-pleckstrin homology (PH) domain was constitutively membrane-associated both in serum-starved and agonist-stimulated cells, in contrast to +/+MEFs, in which it was detected only at the plasma membrane following serum stimulation. Epidermal growth factor (EGF) stimulation resulted in increased Ser473 and Thr308-Akt phosphorylation and activation of Akt-dependent signalling in −/−MEFs, relative to +/+MEFs. Significantly, loss of 4-ptase-1 resulted in increased cell proliferation and decreased apoptosis. SV40-transformed −/−MEFs showed increased anchorage-independent cell growth and formed tumours in nude mice. This study provides the first evidence, to our knowledge, that 4-ptase-1 controls the activation of Akt and thereby cell proliferation, survival and tumorigenesis.  相似文献   

2.
Phosphatidylinositol‐4 kinase III β (PI4KB) is a host factor that is required for enterovirus (EV) replication. In this study, the importance of host proteins that interact with PI4KB in EV replication was analyzed by trans complementation with PI4KB mutants in a PI4KB‐knockout cell line. Ectopically expressed PI4KB mutants, which lack binding regions for ACBD3, RAB11, and 14‐3‐3 proteins, rescued replication of poliovirus and enterovirus 71. These findings suggest that interaction of PI4KB with these host proteins is not essential for EV replication once PI4KB has been expressed and that PI4KB is functionally independent from these host proteins regarding EV replication.  相似文献   

3.
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.  相似文献   

4.
The Arabidopsis phosphoinositide kinase PIP5K2 has been implicated in the control of membrane trafficking and is important for development and growth. In addition to cytosolic functions of phosphoinositides, a nuclear phosphoinositide system has been proposed, but evidence for nuclear phosphoinositides in plants is limited. Fluorescence‐tagged variants of PIP5K2 reside in the nucleus of Arabidopsis root meristem cells, in addition to reported plasma membrane localization. Here we report on the interaction of PIP5K2 with alpha‐importins and characterize its nuclear localization sequences (NLSs). The PIP5K2 sequence contains four putative NLSs (NLSa–NLSd) and only a PIP5K2 fragment containing NLSs is imported into nuclei of onion epidermis cells upon transient expression. PIP5K2 interacts physically with alpha‐importin isoforms in cytosolic split‐ubiquitin‐based yeast two‐hybrid tests, in dot‐blot experiments and in immuno‐pull‐downs. A 27‐amino‐acid fragment of PIP5K2 containing NLSc is necessary and sufficient to mediate the nuclear import of a large cargo fusion consisting of two mCherry markers fused to RubisCO large subunit. Substitution of basic residues in NLSc results in reduced import of PIP5K2 or other cargoes into plant nuclei. The data suggest that PIP5K2 is subject to active, alpha‐importin‐mediated nuclear import, consistent with a nuclear role for PIP5K2 in addition to its reported cytosolic functions. The detection of both substrate and product of PIP5K2 in plant nuclei according to reporter fluorescence and immunofluorescence further supports the notion of a nuclear phosphoinositide system in plants. Variants of PIP5K2 with reduced nuclear residence might serve as tools for the future functional study of plant nuclear phosphoinositides.  相似文献   

5.
6.
Development of the cerebral cortex is controlled by growth factors among which transforming growth factor beta (TGFβ) and insulin‐like growth factor 1 (IGF1) have a central role. The TGFβ‐ and IGF1‐pathways cross‐talk and share signalling molecules, but in the central nervous system putative points of intersection remain unknown. We studied the biological effects and down‐stream molecules of TGFβ and IGF1 in cells derived from the mouse cerebral cortex at two developmental time points, E13.5 and E16.5. IGF1 induces PI3K, AKT and the mammalian target of rapamycin complexes (mTORC1/mTORC2) primarily in E13.5‐derived cells, resulting in proliferation, survival and neuronal differentiation, but has small impact on E16.5‐derived cells. TGFβ has little effect at E13.5. It does not activate the PI3K‐ and mTOR‐signalling network directly, but requires its activity to mediate neuronal differentiation specifically at E16.5. Our data indicate a central role of mTORC2 in survival, proliferation as well as neuronal differentiation of E16.5‐derived cortical cells. mTORC2 promotes these cellular processes and is under control of PI3K‐p110‐alpha signalling. PI3K‐p110‐beta signalling activates mTORC2 in E16.5‐derived cells but it does not influence cell survival, proliferation and differentiation. This finding indicates that different mTORC2 subtypes may be implicated in cortical development and that these subtypes are under control of different PI3K isoforms.

  相似文献   


7.
Type II phosphatidylinositol 4-kinase IIα (PI4KIIα) is the dominant phosphatidylinositol kinase activity measured in mammalian cells and has important functions in intracellular vesicular trafficking. Recently PI4KIIα has been shown to have important roles in neuronal survival and tumorigenesis. This study focuses on the relationship between membrane cholesterol levels, phosphatidylinositol 4-phosphate (PI4P) synthesis, and PI4KIIα mobility. Enzyme kinetic measurements, sterol substitution studies, and membrane fragmentation analyses all revealed that cholesterol regulates PI4KIIα activity indirectly through effects on membrane structure. In particular, we found that cholesterol levels determined the distribution of PI4KIIα to biophysically distinct membrane domains. Imaging studies on cells expressing enhanced green fluorescent protein (eGFP)-tagged PI4KIIα demonstrated that cholesterol depletion resulted in morphological changes to the juxtanuclear membrane pool of the enzyme. Lateral membrane diffusion of eGFP-PI4KIIα was assessed by fluorescence recovery after photobleaching (FRAP) experiments, which revealed the existence of both mobile and immobile pools of the enzyme. Sterol depletion decreased the size of the mobile pool of PI4KIIα. Further measurements revealed that the reduction in the mobile fraction of PI4KIIα correlated with a loss of trans-Golgi network (TGN) membrane connectivity. We conclude that cholesterol modulates PI4P synthesis through effects on membrane organization and enzyme diffusion.  相似文献   

8.
CUDC‐907, a dual PI3K/HDAC inhibitor, has been proposed to have therapeutic potential in hematopoietic malignancies. However, the molecular mechanisms of its effects in chronic lymphocytic leukaemia (CLL) remain elusive. We show that CLL cells are sensitive to CUDC‐907, even under conditions similar to the protective microenvironment of proliferation centres. CUDC‐907 inhibited PI3K/AKT and HDAC activity, as expected, but also suppressed RAF/MEK/ERK and STAT3 signalling and reduced the expression of anti‐apoptotic BCL‐2 family proteins BCL‐2, BCL‐xL, and MCL‐1. Moreover, CUDC‐907 downregulated cytokines BAFF and APRIL and their receptors BAFFR, TACI, and BCMA, thus blocking BAFF‐induced NF‐κB signalling. T cell chemokines CCL3/4/17/22 and phosphorylation of CXCR4 were also reduced by CUDC‐907. These data indicated that CUDC‐907 abrogates different protective signals and suggested that it might sensitize CLL cells to other drugs. Indeed, combinations of low concentrations of CUDC‐907 with inhibitors of BCL2, BTK, or the NF‐κB pathway showed a potent synergistic effect. Our data indicate that, apart from its known functions, CUDC‐907 blocks multiple pro‐survival pathways to overcome microenvironment protection in CLL cells. This provides a rationale to evaluate the clinical relevance of CUDC‐907 in combination therapies with other targeted inhibitors.  相似文献   

9.
10.
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.  相似文献   

11.
We examined effects of two insulin‐like growth factors, insulin and insulin‐like growth factor‐I (IGF‐I), against apoptosis, excitotoxicity, and free radical neurotoxicity in cortical cell cultures. Like IGF‐I, insulin attenuated serum deprivation‐induced neuronal apoptosis in a dose‐dependent manner at 10–100 ng/mL. The anti‐apoptosis effect of insulin against serum deprivation disappeared by addition of a broad protein kinase inhibitor, staurosporine, but not by calphostin C, a selective protein kinase C inhibitor. Addition of PD98059, a mitogen‐activated protein kinase kinase (MAPKK) inhibitor, blocked insulin‐induced activation of extracellular signal‐regulated protein kinases (ERK1/2) without altering the neuroprotective effect of insulin. Cortical neurons underwent activation of phosphatidylinositol (PI) 3‐kinase as early as 1 min after exposure to insulin. Inclusion of wortmannin or LY294002, selective inhibitors of PI 3‐K, reversed the insulin effect against apoptosis. In contrast to the anti‐apoptosis effect, neither insulin nor IGF‐I protected excitotoxic neuronal necrosis following continuous exposure to 15 μM N‐methyl‐d ‐aspartate or 40 μM kainate for 24 h. Surprisingly, concurrent inclusion of 50 ng/mL insulin or IGF‐I aggravated free radical‐induced neuronal necrosis over 24 h following continuous exposure to 10 μM Fe2+ or 100 μM buthionine sulfoximine. Wortmannin or LY294002 also reversed this potentiation effect of insulin. These results suggest that insulin‐ like growth factors act as anti‐apoptosis factor and pro‐oxidant depending uon the activation of PI 3‐kinase. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 536–546, 1999  相似文献   

12.
L‐selectin and P‐selectin glycoprotein ligand‐1 (PSGL‐1) are adhesion molecules that play critical roles in neutrophil rolling during inflammation and lymphocyte homing. On the other hand they also function as signaling receptors to induce cytoskeleton changes. The present study is to investigate the signaling kinases responsible for the F‐actin changes mediated by L‐selectin and PSGL‐1 during neutrophil rolling on E‐selectin. Western blot analysis demonstrated that PI3K activation, peaking within 5 min, was induced by ligation of L‐selectin and PSGL‐1 with E‐selectin, and that Vav1 (the pivotal downstream effector of PI3K signaling pathway involved in cytoskeleton regulation) was recruited to the membrane and tyrosine‐phosphorylated, depending on PI3K. Furthermore, the F‐actin redistribution and assembly mediated by ligation with E‐selectin were blocked by LY294002, a PI3K specific inhibitor. Additional experiments showed that PI3K activity was involved in neutrophil rolling on E‐selectin. However, Syk/Zap70, the well‐known upstream kinase of PI3K, was not involved in this event. These data suggest that PI3K is required for the F‐actin‐based cytoskeleton changes during neutrophil rolling on E‐selectin, which may consequently regulate the rolling event. J. Cell. Biochem. 110: 910–919, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Two series of 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐ones and N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines were designed initially as potential acetylcholine esterase inhibitors. Biological evaluation demonstrated that N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines significantly inhibited AChE activity. Especially, two compounds of them were found to be the most potent with relative AChE inhibition percentages of 87 % in comparison to donepezil. The docking studies with AChE showed similar interactions between donepezil and four derivatives. N‐(1‐Benzylpiperidin‐4‐yl)quinazolin‐4‐amines also exhibited significant DPPH scavenging effects. The two series of compound also exerted moderate to good cytotoxicity against three human cancer cell lines, including SW620 (human colon cancer), PC‐3 (prostate cancer), and NCI?H23 (lung cancer), with 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one being the most cytotoxic agent. 3‐[(1‐Benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one significantly induced early apoptosis and arrested the SW620 cells at G2/M phase. From this study, two compounds of N‐(1‐benzylpiperidin‐4‐yl)quinazolin‐4‐amines could serve as new leads for further design and AChE inhibitors, while 3‐[(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]quinazolin‐4(3H)‐one could serve as a new lead for the design and development of more potent anticancer agents.  相似文献   

14.
The BAR (Bin/Amphiphysin/Rvs) domain proteins arfaptin1 and arfaptin2 are localized to the trans‐Golgi network (TGN) and, by virtue of their ability to sense and/or generate membrane curvature, could play an important role in the biogenesis of transport carriers. We report that arfaptins contain an amphipathic helix (AH) preceding the BAR domain, which is essential for their binding to phosphatidylinositol 4‐phosphate (PI(4)P)‐containing liposomes and the TGN of mammalian cells. The binding of arfaptin1, but not arfaptin2, to PI(4)P is regulated by protein kinase D (PKD) mediated phosphorylation at Ser100 within the AH. We also found that only arfaptin1 is required for the PKD‐dependent trafficking of chromogranin A by the regulated secretory pathway. Altogether, these findings reveal the importance of PI(4)P and PKD in the recruitment of arfaptins at the TGN and their requirement in the events leading to the biogenesis of secretory storage granules.  相似文献   

15.
16.
Mutational activation of RAC1 is detected in ~7% of cutaneous melanoma, with the most frequent mutation (RAC1C85T) encoding for RAC1P29S. RAC1P29S is a fast‐cycling GTPase that leads to accumulation of RAC1P29S‐GTP, which has potentially pleiotropic regulatory functions in melanoma cell signaling and biology. However, the precise mechanism by which mutationally activated RAC1P29S propagates its pro‐tumorigenic effects remains unclear. RAC1‐GTP is reported to activate the beta isoform of PI3’‐kinase (PIK3CB/PI3Kβ) leading to downstream activation of PI3’‐lipid signaling. Hence, we employed both genetic and isoform‐selective pharmacological inhibitors to test if RAC1P29S propagates its oncogenic signaling in melanoma through PI3Kβ. We observed that RAC1P29S‐expressing melanoma cells were largely insensitive to inhibitors of PI3Kβ. Furthermore, RAC1P29S melanoma cell lines showed variable sensitivity to pan‐class 1 (α/β/γ/δ) PI3’‐kinase inhibitors, suggesting that RAC1‐mutated melanoma cells may not rely on PI3’‐lipid signaling for their proliferation. Lastly, we observed that RAC1P29S‐expressing cell lines also showed variable sensitivity to pharmacological inhibition of the RAC1 → PAK1 signaling pathway, questioning the relevance of inhibitors of this pathway for the treatment of patients with RAC1‐mutated melanoma.  相似文献   

17.
Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi‐kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti‐neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c‐myc‐amplified Non‐WNT/Non‐SHH and SHH‐TP53‐mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c‐kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi‐modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC‐0941 enhances the anti‐neoplastic efficacy of Axitinib against c‐myc‐amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes.  相似文献   

18.
19.
The synthesis and characterization of three new 4‐pyridyl porphyrin‐peptidyl‐phosphonate compounds, containing a diphenyl 3‐pyridylmethyl‐phosphonate moiety, is described in this article. Nitrogen atoms in the pyridine rings of the obtained compounds were alkylated using methyl iodide, to give additional three, water soluble derivatives of these peptidyl‐porphyrin conjugates. All the synthesized compounds could serve as potential photosensitizers for the photodynamic therapy (PDT) method of tumor therapy and displayed activity as inhibitors of aminopeptidase N. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号