首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In standardMurashige-Skoog medium, particularly at pH higher than 5.0 and after heat sterilization, there is a tendency for turbidity or a sediment to appear, and for the acidity to increase by 0.2 to 0.5 degrees pH. The sediment is an amorphous precipitate of ferric phosphate and partly also of ferrous phosphate. In a stock iron solution prepared by chelation of ferrous sulphate with an equimolar quantity of the complexone Na2EDTA. up to 10% free FeII ions could be detected. By titration of a concentrated complexon solution it was found that in the presence of an excess of Na2EDTA (at the approximate molar ratio FeII: Na2EDTA 1: 2) chelation of this free iron takes place to such an extent that its concentration falls to as little as 0.1%. Media with iron stabilized in this way are quite clear and maintain the adjusted pH for up to several weeks. The heat sterilization, too, does not lead to any precipitation or to a shift in pH within the broad range of adjusted values pH 4.8 – 6.0. We also attempted to increase the relatively low buffering capacity of Murashige-Skoog medium. The addition of sodium citrate (1.25 mmol 1-1) and particularly of citrate-phosphate buffer (at a final concentration of 1.97 mmol citric acid and 6.07 mmol dibasic sodium phosphate per litre of medium) to the Murashige-Skoog medium considerably increased its buffering capacity, so that at the end of the subculture interval of tobacco cell suspensions the adjusted acidity changed only slightly (pH 5.40 ± 0.15). A thorough evaluation of the growth parameters of tobacco batch cultures (cell counts, vital staining, kinetics of DNA and protein synthesis) failed to reveal any negative effect either of additional chelation or of the buffering components.  相似文献   

2.
Cerebral acidosis occurring during ischemia has been proposed as one determinant of tissue damage. Newborn animals appear to be less susceptible to ischemic tissue damage than adults. One possible component of ischemic tolerance could derive from maturational differences in the extent of acid production and buffering in newborns compared to adults. The purpose of this study was to measure the dependency of acid production on the blood plasma glucose concentrations and acid buffering capacity of piglets at different stages of development. Complete ischemia was induced in 29 piglets ranging in postconceptual age from 111 to 156 days (normal term conception, 115 days). Brain buffering capacity during the first 30 min of ischemia was quantified in vivo, via 31P and 1H nuclear magnetic resonance (NMR) spectroscopy, by measuring the change in intracellular brain pH for a given change in the concentration of compounds that contribute to the production of hydrogen ions. Animals from all four age groups showed a similar linear correlation between preischemia blood glucose concentration and intracellular pH after 30 min of ischemia. For each animal the slope of the plot of intracellular pH versus cerebral buffer base deficit was used to calculate the buffer capacity. Using data obtained over the entire 30 min of ischemia, there was no difference in the mean buffer capacity of the different age groups, nor was there a significant correlation between buffer capacity and age. However, there was a significant increase in buffer capacity for the intracellular pH range 6.6-6.0, compared to 7.0-6.6, for all age groups. No significant differences in buffer capacity for these two pH ranges were observed between any of the age groups. Acid buffering capacity was also measured by performing pH titrations on brain tissue homogenized in the presence of inhibitors of glycolysis and creatine kinase. Plots of homogenate pH versus buffer base deficit showed a nonlinear trend similar to that seen in vivo, indicating an increase in buffer capacity as intracellular pH decreases. A comparison of newborn and 1-month-old brain tissue frozen under control conditions or after 45 min of ischemia revealed no differences that could be attributed to age and a slight decrease in buffer capacity of ischemic brain compared to control brain tissue homogenates. There was no difference between the brain buffering capacity measured in vivo using 31P and 1H NMR and that measured in vitro using brain homogenates.  相似文献   

3.
Formulation of protein biopharmaceuticals as highly concentrated liquids can improve the drug substance storage and supply chain, improve the target product profile, and allow greater flexibility in dosing methods. The Donnan effect can cause a large offset in pH from the target value established with the diafiltration buffer during the concentration and diafiltration of charged proteins with ultrafiltration membranes. For neutral formulations, the pH will typically increase above the diafiltration buffer pH for basic monoclonal antibodies and decline below the diafiltration buffer pH for acidic Fc-fusion proteins. In this study, new equations for the Donnan effect during the diafiltration and concentration of proteins in solutions containing monovalent and divalent ions were derived. The new Donnan models obey mass conservation laws, account for the buffering capacity of proteins, and account for protein-ion binding. Data for the pH offsets of an Fc-fusion protein and a monoclonal antibody were predicted in both monovalent and divalent buffers using these equations. To compensate for the pH offset caused by the Donnan effect, diafiltration buffers with pH and excipient values offset from the ultrafiltrate pool specifications can be used. The Donnan offset observed during the concentration of an acidic Fc-fusion protein was mitigated by operating at low temperature. It is important to account for the Donnan effect during preformulation studies. The excipients levels in an ultrafiltration pool may differ from the levels in a protein solution obtained by adding buffers into concentrated protein solutions due to the Donnan effect.  相似文献   

4.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
A drawback of targeting soluble antigens such as cytokines or toxins with long-lived antibodies is that such antibodies can prolong the half-life of the target antigen by a “buffering” effect. This has motivated the design of antibodies that bind to target with higher affinity at near neutral pH relative to acidic endosomal pH (~pH 6.0). Such antibodies are expected to release antigen within endosomes following uptake into cells, whereas antibody will be recycled and exocytosed in FcRn-expressing cells. To understand how the pH dependence of antibody-antigen interactions affects intracellular trafficking, we generated three antibodies that bind IL-6 with different pH dependencies in the range pH 6.0–7.4. The behavior of antigen in the presence of these antibodies has been characterized using a combination of fixed and live cell fluorescence microscopy. As the affinity of the antibody:IL-6 interaction at pH 6.0 decreases, an increasing amount of antigen dissociates from FcRn-bound antibody in early and late endosomes, and then enters lysosomes. Segregation of antibody and FcRn from endosomes in tubulovesicular transport carriers (TCs) into the recycling pathway can also be observed in live cells, and the extent of IL-6 association with TCs correlates with increasing affinity of the antibody:IL-6 interaction at acidic pH. These analyses result in an understanding, in spatiotemporal terms, of the effect of pH dependence of antibody-antigen interactions on subcellular trafficking and inform the design of antibodies with optimized binding properties for antigen elimination.  相似文献   

6.
Jack bean urease has been immobilized on arylamine glass beads (200–400 mesh size, 75–100 Å pore size) and its properties compared with soluble enzyme. The binding of urease was 13.71 mg per gram beads. The Km for soluble and immobilized urease for urea was 4.20 mM and 8.81 mM, respectively. Vmax values of urease decreased from 200 to 43.48 μmol of ammonia formed per min per mg protein at 37°C on immobilization. Both pH and buffer ions influenced the activities of soluble as well as immobilized urease. Soluble urease exhibited pH optima at 5.5 and 8.0. However, immobilized urease showed one additional pH optimum at 6.5. In comparison to phosphate buffer, citrate buffer was inhibitory to urease activity. Immobilization of urease on arylamine glass beads resulted in improved thermal, storage and operational stability. Because of inertness of support and stability of immobilized urease, the preparation can find applications in ‘artificial kidney’ and urea estimation in biological fluids viz., blood, milk etc.  相似文献   

7.
Citrate(si)-synthase (citrate oxaloacetate-lyasem EC 4.1.3.7) was purified as an electrophoretically homogeneous protein from an ammonia-oxidizing chemoautotrophic bacterium, Nitrosomonas sp. TK794. The molecular mass of the native enzyme was estimated to be about 287 kDa by gel filtration, whereas SDS-PAGE produced one band with Mr values of 44.7 kDa, suggesting that the enzyme is a hexamer consisting of identical subunits. The isoelectric point of the enzyme was 5.0. The pH and temperature optima for citrate synthase (CS) activity was about 7.5–8.0 and 40°C, respectively. The citrate synthase was stable over a pH range of 6.0–8.5 and up to 40°C. The apparent Km values for oxaloacetate and acetyl-CoA were about 11 μM and 247 μM, respectively. The activity of the citrate synthase was not inhibited by ATP, NADH or 2-oxoglutarate at 5mM, and was activated by potassium chloride at 0.1–100 mM. The N-terminal amino acid sequence of the enzyme protein was PPQDVATLSPGENKKTIELPILG.  相似文献   

8.
This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA‐induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high‐molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host–cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15–25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5–1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA‐based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1515–1525, 2015  相似文献   

9.
Freezing of biologic drug substance at large scale is an important unit operation that enables manufacturing flexibility and increased use‐period for the material. Stability of the biologic in frozen solutions is associated with a number of issues including potentially destabilizing pH changes. The pH changes arise from temperature‐associated change in the pKas, solubility limitations, eutectic crystallization, and cryoconcentration. The pH changes for most of the common protein formulation buffers in the frozen state have not been systematically measured. Sodium phosphate buffer, a well‐studied system, shows the greatest change in pH when going from +25 to ?30°C. Among the other buffers, histidine hydrochloride, sodium acetate, histidine acetate, citrate, and succinate, less than 1 pH unit change (increase) was observed over the temperature range from +25 to ?30°C, whereas Tris‐hydrochloride had an ~1.2 pH unit increase. In general, a steady increase in pH was observed for all these buffers once cooled below 0°C. A formulated IgG2 monoclonal antibody in histidine buffer with added trehalose showed the same pH behavior as the buffer itself. This antibody in various formulations was subject to freeze/thaw cycling representing a wide process (phase transition) time range, reflective of practical situations. Measurement of soluble aggregates after repeated freeze–thaw cycles shows that the change in pH was not a factor for aggregate formation in this case, which instead is governed by the presence or absence of noncrystallizing cryoprotective excipients. In the absence of a cryoprotectant, longer phase transition times lead to higher aggregation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
Forest canopies buffer climate extremes and promote microclimates that may function as refugia for understory species under changing climate. However, the biophysical conditions that promote and maintain microclimatic buffering and its stability through time are largely unresolved. We posited that forest microclimatic buffering is sensitive to local water balance and canopy cover, and we measured this effect during the growing season across a climate gradient in forests of the northwestern United States (US). We found that forest canopies buffer extremes of maximum temperature and vapor pressure deficit (VPD), with biologically meaningful effect sizes. For example, during the growing season, maximum temperature and VPD under at least 50% forest canopy were 5.3°C and 1.1 kPa lower on average, respectively, compared to areas without canopy cover. Canopy buffering of temperature and vapor pressure deficit was greater at higher levels of canopy cover, and varied with water balance, implying that buffering effects are subject to changes in local hydrology. We project changes in the water balance for the mid‐21st century and predict how such changes may impact the ability of western US forests to buffer climate extremes. Our results suggest that some forests will lose their capacity to buffer climate extremes as sites become increasingly water limited. Changes in water balance combined with accelerating canopy losses due to increases in the frequency and severity of disturbance will create potentially non‐linear changes in the microclimate conditions of western US forests.  相似文献   

11.
Diafiltration of a protein solution into a new buffer is a common final step in biopharmaceutical manufacturing. However, the excipient concentrations in the retentate are not always equal to their corresponding concentrations in the new buffer (diafiltration buffer). This phenomenon was observed repeatedly during diafiltration of different therapeutic monoclonal antibodies in which the concentrations of histidine and either sorbitol or sucrose (depending on which was chosen for the diafiltration buffer) in the retentate were lower than in the diafiltration buffer. Experimental studies and theoretical analyses of the ultrafiltration/diafiltration (UF/DF) step were carried out to determine the primary causes of the phenomenon and to develop a mathematical model capable of predicting retentate excipient concentrations. The analyses showed that retentate histidine concentration was low primarily because of repulsive charge interactions between positively‐charged histidine molecules and positively‐charged protein molecules, and that volume exclusion effects were secondary for like‐charged molecules. The positively‐charged protein molecules generate an electrical potential that cause an uneven distribution of charged histidine molecules. This interaction was used to construct a mathematical model based on the Poisson‐Boltzmann equation. The model successfully predicted the final histidine concentration in the diafiltered product (retentate) from the UF/DF development and production runs, with good agreement across a wide range of protein and histidine concentrations for four therapeutic monoclonal antibodies. The concentrations of uncharged excipients (sorbitol or sucrose) were also successfully predicted using previously established models, with volume exclusion identified as the primary cause of differences in uncharged excipient concentrations in the retentate and diafiltration buffer. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Successful antigen retrieval (AR) immunohistochemistry is dependent on the temperature, heating time, and pH value of the AR solutions. There is no single standardized AR solution, however, that is suitable for all antibodies “routinely” used in surgical pathology for immunostaining archival tissue sections. We tested a variety of AR solutions varying in pH value, chemical composition, and molarity. Based upon preliminary results, we compared three AR solutions: 0.1 M Tris-HCI buffer, pH 9.5, containing 5% urea, 0.1 M Tris-HCI buffer pH 9.5 without urea, and citrate buffer, pH 6.0. Each AR solution was tested with a panel of 34 antibodies using microwave heating for antigen retrieval. The heating conditions were standardized at 10 min and an automated stainer was used to standardize the immunostaining method. The Tris-HC1 containing urea was superior to pH 6.0 citrate buffer for 22 antibodies. In 12 cases, Tris-HC1 with urea was also superior to Tris-HC1 alone. In 12 cases, the intensity was similar for all three retrieval solutions. The staining obtained with Tris-HC1 with urea was equal to or better than with pH 6.0 citrate buffer in all cases. The Tris-HC1 with urea solution is satisfactory for AR of most antibodies employed in routine surgical pathology.  相似文献   

13.
Successful antigen retrieval (AR) immunohistochemistry is dependent on the temperature, heating time, and pH value of the AR solutions. There is no single standardized AR solution, however, that is suitable for all antibodies “routinely” used in surgical pathology for immunostaining archival tissue sections. We tested a variety of AR solutions varying in pH value, chemical composition, and molarity. Based upon preliminary results, we compared three AR solutions: 0.1 M Tris-HCI buffer, pH 9.5, containing 5% urea, 0.1 M Tris-HCI buffer pH 9.5 without urea, and citrate buffer, pH 6.0. Each AR solution was tested with a panel of 34 antibodies using microwave heating for antigen retrieval. The heating conditions were standardized at 10 min and an automated stainer was used to standardize the immunostaining method. The Tris-HC1 containing urea was superior to pH 6.0 citrate buffer for 22 antibodies. In 12 cases, Tris-HC1 with urea was also superior to Tris-HC1 alone. In 12 cases, the intensity was similar for all three retrieval solutions. The staining obtained with Tris-HC1 with urea was equal to or better than with pH 6.0 citrate buffer in all cases. The Tris-HC1 with urea solution is satisfactory for AR of most antibodies employed in routine surgical pathology.  相似文献   

14.
Helicobacter pylori utilises urea for amino acid synthesis   总被引:2,自引:0,他引:2  
Abstract Helicobacter pylori has one of the highest urease activities of all known bacteria. Its enzymatic production of ammonia protects the organism from acid damage by gastric juice. The possibility that the urease activity allows the bacterium to utilise urea as a nitrogen source for the synthesis of amino acids was investigated. H. pylori (NCTC 11638) was incubated with 50 mM urea, enriched to 5 atom% excess 15N, that is the excess enrichment of 15N above the normal background, in the presence of either NaCl pH 6.0, or 0.2M citrate pH 6.0. E. coli (NCTC 9001) was used as a urease-negative control. 15N enrichment was detected by isotope ratio mass spectrometry. H. pylori showed intracellular incorporation of 15N in the presence of citrate buffer pH 6.0 but there was no significant incorporation of 15N in unbuffered saline or by E. coli in either pH 6.0 citrate buffer or unbuffered saline. The intracellular fate of the urea-nitrogen was determined by means of gas chromatography/mass spectrometry following incubation with 15N enriched 5 mM urea in the presence of either 0.2 M citrate buffer pH 6.0 or 0.2 M acetate buffer pH 6.0. After 5 min incubation in either buffer the 15n label appeared in glutamate, glutamine, phenylalanine, aspartate and alanine. It appears, therefore, that at pH and urea concentrations typical of the gastric mucosal surface, H. pylori utilises exogenous urea as a nitrogen source for amino acid synthesis. The ammonia produced by H. pylori urease activity thus facilitates the organism's nitrogen metabolism at neutral pH as well as protecting it from acid damage at low pH.  相似文献   

15.
To make the native LHRH immunogenic, a multimer of LHRH interspersed with T non-B peptides (r-LHRH-d2) was expressed as recombinant protein in Escherichia coli. The expression level of the recombinant protein was around 15% of the total cellular protein and it aggregated as inclusion bodies. Inclusion bodies from the bacterial cells were isolated and purified to homogeneity. Instead of high concentrations of chaotropic agents, r-LHRH- d2 was solubilized in 50 mM citrate buffer at pH 3 containing 2 M urea. The protein was refolded by 5-fold dilution (pulsatile) with cold 10 mM citrate buffer at pH 6 in presence of 0.3 M L-arginine. Purification of r-LHRH-d2 was carried out by successive passages on CM-Sepharose column at pH 6.0 which retained extraneous proteins and pH 4.8 at which r-LHRH-d2 bound to the resin. The elution was carried out by using linear salt gradient (0.1-1 M NaCl). The overall yield of the purified r-LHRH-d2 was 40% of the initial inclusion body proteins. The purity and homogeneity were confirmed by a single homogeneous peak on analytical HPLC eluting out at 29.51 min and by single band on SDS-PAGE reactive with polyvalent anti-LHRH antibodies. Mass spectroscopic analysis indicated the protein to be of 16.6 kDa which equals the theoretically expected mass. The N-terminal amino acid analysis of r-LHRH-d2 showed the sequence which corresponded to the designed protein. The CD spectrum of the refolded r-LHRH-d2 showed that the multimer has considerable beta sheet structure like the monomeric LHRH protein.  相似文献   

16.
Buffering capacity of deproteinized human vastus lateralis muscle   总被引:7,自引:0,他引:7  
The in vitro deproteinized vastus lateralis muscle buffer capacity, carnosine, and histidine levels were examined in 20 men from 4 distinct populations (5 sprinters, 800-m runners; 5 rowers; 5 marathoners; 5 untrained). Needle biopsies were obtained at rest from the vastus lateralis muscle. The buffer capacity was determined in deproteinized homogenates by repeatedly titrating supernatant extracts over the pH range of 7.0-6.0 with 0.01 N HCl. Carnosine and histidine levels were determined on an amino acid AutoAnalyzer. Fast-twitch fiber percentage was determined by staining intensity of myosin adenosinetriphosphatase. High-intensity running performance was assessed on an inclined treadmill run to fatigue (20% incline; 3.5 m X s-1). Significantly (P less than 0.01) elevated buffer capacities, carnosine levels, and high-intensity running performances were demonstrated by the sprinters and rowers, but no significant differences existed between these variables for the marathoners vs. untrained subjects. Low but significant (P less than 0.05) interrelationships were demonstrated between buffer capacity, carnosine levels, and fast-twitch fiber composition. These findings indicate that the sprinters and rowers possess elevated buffering capabilities and carnosine levels compared with marathon runners and untrained subjects.  相似文献   

17.
Buffers of different pH and ionic strength were employed as coating buffers for antigen adsorption to microtitre plates. Their efficiency for coating plates with rinderpest virus (RPV) and foot-and-mouth disease virus (FMDV) antigens was studied by ELISA with polyclonal and monoclonal antibody preparations. While the adsorption and detection of RPV antigen with polyclonal antiserum was highly dependent on the ionic strength and pH of coating buffer, adsorption of antigenically active FMDV antigen was relatively unaffected by the buffering conditions. Both antigens were adsorbed optimally in 0.01 M phosphate buffer, pH 8.0. When monoclonal antibodies were used to detect antigen, there was a greater degree of dependence on the coating buffer than that found with polyclonal antisera. Moreover, when they were used to detect antigen adsorbed under several buffering conditions, monoclonal antibodies showed a variety of preferred buffers. The usefulness of this differential reactivity in distinguishing epitope specificity is demonstrated.  相似文献   

18.
Producing economically competitive recombinant human lysozyme from transgenic rice demands an inexpensive purification process for nonpharmaceutical applications. Human lysozyme is a basic protein, and thus, cation exchange chromatography was the selected method for lysozyme purification. Similar to other protein production systems, the identification of critical impurities in the rice extract was important for the development of an efficient purification process. Previous adsorption data indicated that phytic acid was probably responsible for an unacceptably low cation exchange adsorption capacity. In this study, we confirm that reducing phytic acid concentration improves lysozyme binding capacity and investigate alternative process conditions that reduce phytic acid interference. Compared with the previous best process, the adsorption capacity of human lysozyme was increased from 8.6 to 19.7 mg/mL when rice extract was treated with phytase to degrade phytic acid. Using tris buffer to adjust pH 4.5 extract to pH 6 before adsorption reduced phytic acid interference by minimizing phytic acid-lysozyme interactions, eliminated the need for phytase treatment, and increased the binding capacity to 25 mg/mL. Another method of reducing phytic acid concentration was to extract human lysozyme from rice flour at pH 10 with 50 mM NaCl in 50 mM sodium carbonate buffer. A similar binding capacity (25.5 mg/mL) was achieved from pH 10 extract that was clarified by acidic precipitation and adjusted to pH 6 for adsorption. Lysozyme purities ranged from 95 to 98% for all three processing methods. The tris-mediated purification was the most efficient of the alternatives considered.  相似文献   

19.
施肥和增水对弃耕草地土壤酸中和容量的影响   总被引:2,自引:0,他引:2  
大气氮沉降增加是草地土壤酸化的主要原因。土壤酸缓冲性能作为评估土壤酸化的重要指标,对氮输入的响应受到降水与其他限制养分含量的影响。本研究以我国北方温带弃耕草地氮、磷、水添加试验13年后的土壤为对象,利用二次多项式模型拟合酸滴定曲线,计算了土壤酸缓冲容量(ABC)以及以pH 5.0和4.0为参比的土壤酸中和容量(ANC)。结果表明: 不增水处理下,单独加氮和同时添加氮磷均显著降低土壤pH,降低以pH 5.0和4.0为参比时的酸中和容量(ANCpH5.0和ANCpH4.0);单独加磷对土壤pH、ANCpH5.0和ANCpH4.0均无显著影响。增水处理下,加氮及加氮磷显著降低土壤pH、ANCpH5.0和ANCpH4.0;加磷显著降低土壤pH,但增加了ANCpH4.0,而对ANCpH5.0无显著影响。与不增水处理相比,增水处理对土壤pH、酸中和容量均具有显著的正效应。对于初始pH值不同的土壤,采用土壤酸中和容量比酸缓冲容量能更好地指示土壤抗酸化能力。  相似文献   

20.
Crystallization holds the potential to be used for protein purification and low‐viscosity drug substance and drug product formulations. Twenty‐two different proteins (20 monoclonal antibodies and two Fc‐fusions) were examined to determine the breadth of applicability of crystallization to these therapeutic proteins. Vapor diffusion technique and an evaporative screening method were used to identify crystallization conditions using around a 100 initial conditions based on reagents that are generally regarded as safe (GRAS). Of 16 IgG2s examined, at least four formed diffraction‐quality crystals and four others formed crystal‐like particles. At least three of the IgG2s that crystallized well were also crystallized under the same set of operating conditions using inexpensive GRAS reagents. The crystals were formed to high‐yields in a few hours and were dissolved quickly without impacting product quality. Although only a fraction of the proteins examined crystallized, all exhibited liquid‐liquid phase separation (LLPS), which could be used for their concentration or possibly purification. One of the Fc‐fusions, for example, was concentrated by LLPS to a self‐buffering solution at 150 g/L. Crystallization and LLPS in the salting‐in region were shown to be feasible. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号