首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Recently, it was found that excess phosphorus (Pi) removal could be achieved in activated sludge with an aerobic/extended‐idle (AEI) process. In this study, batch tests were performed to further reveal the inducing mechanism of Pi removal involved in the AEI process. Unlike the classical anaerobic/aerobic process where an anaerobic Pi release along with a significant polyhydroxyalkanoate (PHA) accumulation drives polyphosphate (poly‐P) accumulating organisms (PAOs) to over‐store Pi as poly‐P, an idle Pi release accompanied by a low‐idle PHA production, which is usually considered to be detrimental for biological Pi removal, was observed to induce some cells to effectively uptake Pi in excess of metabolic requirement in the AEI process. With the increase of idle Pi release, Pi removal efficiency linearly increased. The results also showed that a long idle period with a low level of intracellular glycogen could significantly increase Pi release contents, thus remarkably enhancing Pi removal performances. Fluorescence in situ hybridization analysis further revealed that activated sludge in the AEI process contained 37.6% of Accumulibacter (PAOs) and 28.2% of Competibacter and Defluviicoccus‐related organisms (glycogen accumulating organisms). This study revealed an actually existent, yet previously unrecognized, inducing mechanism of poly‐P accumulation, and this mechanism behind the AEI regime may provide a scientific basis for the development of an alternative strategy for Pi removal from wastewaters. Biotechnol. Bioeng. 2012; 109: 2798–2807. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic‐fed PAO‐enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol‐degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid‐term basis with this procedure. Biotechnol. Bioeng. 2013; 110: 391–400. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs.  相似文献   

5.
The metabolism of polyphosphate accumulating organisms (PAOs) has been widely studied through the use of lab-scale enrichments. Various metabolic models have been formulated, based on the results from lab-scale experiments using enriched PAO cultures. A comparison between the anaerobic stoichiometry predicted by metabolic models with that exhibited by full-scale sludge in enhanced biological phosphorus removal (EBPR) wastewater treatment plants (WWTPs) was performed in this study. Batch experiments were carried out with either acetate or propionate as the sole carbon source, using sludges from two different EBPR-WWTPs in Australia that achieved different phosphorus removal performances. The results support the hypothesis that the anaerobic degradation of glycogen is the primary source of reducing equivalents generated by PAOs, however, they also suggested a partial contribution of the tricarboxylic acid (TCA) cycle in some cases. The experimental results obtained when acetate was the carbon source suggest the involvement of the modified succinate-propionate pathway for the generation of poly-beta-hydroxyvalerate (PHV). Overall, the batch test results obtained from full-scale EBPR sludge with both substrates were generally well described by metabolic model predictions for PAOs.  相似文献   

6.
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass . h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis.  相似文献   

7.
Recently, it has been reported that the aerobic/extended-idle (AEI) regime can achieve a satisfied biological phosphorus removal (BPR). Although the AEI regime has exhibited some merits, its main drawback that the extended-idle phase (e.g., 210–450 min) is much longer than the anaerobic phase (e.g., 60–120 min) performed in the aerobic/oxic (A/O) regime requires to be addressed. In this study, a new configuration of sequencing batch reactor (SBR) with sludge tank halved (STH-SBR) was therefore designed. After stable operation, 96.9 ± 0.5% of total phosphorus was removed in the STH-SBR, which was higher than that in the AEI-SBR (86.9 ± 0.8%) and A/O-SBR (84.7 ± 1.3%). Further investigations showed that the biomass cultured in the STH-SBR contained more polyphosphate accumulating organisms but less glycogen accumulating organisms than that in the AEI-SBR and A/O-SBR. In the STH-SBR, the aerobic glycogen accumulation was lower than that in the A/O-SBR while the average idle phosphorus release was greater than that in the AEI-SBR. Finally, the key enzyme activities in the AEI and A/O regimes were compared for the first time, and the reasons for the AEI regime showing lower exopolyphosphatase and polyphosphate kinase activities were also discussed.  相似文献   

8.
Changes in the microbial community of an enhanced biological phosphorus removal (EBPR) activated sludge system under different influent phosphorus/carbon (P/C) ratio conditions were investigated through evaluation of population respiratory quinone profiles. A total of 13 types of respiratory quinone homologs consisting of 3 types of ubiquinones (UQ) and 10 types of menaquinones (MK) were identified in this study. The dominant quinones were UQ-8 and MK-7 throughout the operational period. A higher P/C ratio (0.1) in the influent stimulated an increase in the mole fractions of UQ-8, MK-7, MK-8(H4), MK-9(H4) and MK-8(H8), suggesting that actinobacterial polyphosphate-accumulating organisms (PAO) containing partially hydrogenated MK, mainly MK-8(H4), were contributing to EBPR. However, when the P/C ratio gradually decreased from 0.1 to 0.01, the mole fractions of UQ-8 increased from 0.46 to 0.58, while MK-7, MK-8(H2), MK-8(H4), MK-9(H4), MK-8(H8) and MK-9(H6) markedly decreased. These changes in the respiratory quinone profiles suggest that glycogen-accumulating organisms corresponding to some Gammaproteobacteria had become dominant populations with a decrease in actinobacterial PAO. On the other hand, increasing abruptly the P/C ratio to 0.1 further caused an increase in the mole fraction of UQ-8, indicating that Rhodocyclus-related organisms were important PAO.  相似文献   

9.
Park KY  Lee JW  Song KG  Ahn KH 《Bioresource technology》2011,102(3):2462-2467
Potential use of the municipal sludge ozonolysate as a carbon source was examined for phosphorus removal from low strength wastewater in a modified intermittently decanted extended aeration (IDEA) process. At ozone dosage of 0.2 g O3/g solids, readily biodegradable COD accounted for about 36% of COD from sludge ozonolysate. The denitrification potential of ozonolysate as a carbon source was comparable to that of acetate. Although, the first order constant for phosphorus release with the ozonolysate was half that of acetate, it was much higher than that of wastewater. Continuous operation of the modified IDEA process showed that the removals of nitrogen and phosphorus were simultaneously enhanced by addition of the ozonolysate. Phosphorus release was significantly induced after complete denitrification indicating that phosphorus release was strongly depended on nitrate concentration. Effectiveness of the ozonolysate as a carbon source for EBPR was also confirmed in a track study of the modified IDEA.  相似文献   

10.
11.
A mathematical model based on the simulation software AQUASIM was developed to validate an anaerobic/aerobic/anoxic (AOA) process that enables simultaneous nitrogen and phosphorus removal in a single reactor by adding external organic carbon to preclude excess aerobic phosphate uptake by polyphosphate-accumulating organisms (PAOs) and provide phosphate for denitrifying PAOs (DNPAOs). Aerobic batch tests after anaerobic phosphate release with different chemical oxygen demand (COD) concentrations indicated that the effect of COD concentration on the phosphate uptake preclusion could be expressed by a simple formula. The reduction factor reflecting the formula, which retards the aerobic phosphate uptake in the presence of COD, was added to the process rates of aerobic polyphosphate storage and PAOs growth in the model. The improved model, which included the reduction factor, reasonably matched the experimental result regarding aerobic phosphate uptake behavior whereas the model without it did not; thus, the former precisely predicts the AOA process behavior.  相似文献   

12.
A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%.  相似文献   

13.
A structured metabolic model is developed that describes the stoichiometry and kinetics of the biological P removal process. In this approach all relevant metabolic reactions underlying the metabolism, considering also components like adenosine triphosphate (ATP) and nic-otinamide-adenine dinucleotide (NADH(2)) are describedbased on biochemical pathways. As a consequence of the relations between the stoichiometry of the metabolic reactions and the reaction rates of components, the required number of kinetic relations to describe the process is reduced. The model describes the dynamics of the storage compounds which are considered separately from the active biomass. The model was validated in experiments at a constant sludge retention time of 8 days, over the anaerobic and aerobic phases in which the external oncentrations as well as the internal fractions of the relevant components involved in the P-removal process were monitored. These measurements include dissolved acetate, phosphate, and ammonium; oxygen consumption; poly-beta-hydroxybutyrate (PHB); glycogen; and active biomass. The model satisfactorily describes the dynamic behavior of all components during the anaerobicand aerobic phases.(c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

15.
This study was conducted to obtain a better insight into the metabolic behavior of denitrifying phosphate-accumulating organisms relative to the transformations of relevant intracellular compounds as well as phosphorus and nitrate for enhanced biological phosphorus removal under different combinations of electron acceptor (oxygen or nitrate) and electron donor (acetate). Under anoxic conditions, the amount of polyhydroxybutyrate (PHB) produced per acetate taken up considerably increased with the increasing amount of nitrate reduced whereas the amounts of nitrate reduced and phosphorus released per acetate taken up remained almost constant. However, glycogen utilization occurred during PHB production and then was again observed in response to the initial supplementation of acetate after glycogen accumulation was transiently observed during anoxic phosphorus uptake using nitrate as an electron acceptor. On the other hand, under subsequent aerobic conditions, the additional supplementation of acetate again caused aerobic phosphorus release and PHB production, which showed that PHB production was associated with polyphosphate cleavage regardless of electron acceptor conditions. In contrast to anoxic conditions, glycogen accumulation was observed during PHB production. Based on these observations, the preliminary model for the metabolic behavior of denitrifying phosphate-accumulating organisms was proposed and could well account for the complex transformations of PHB and glycogen together with phosphorus release in the presence of acetate under different electron acceptors.  相似文献   

16.
This study evaluated the prediction capability of Activated Sludge Model No. 2d (ASM2d), for the enhanced biological phosphorus removal (EBPR) performance of a sequencing batch reactor (SBR) receiving variable influent phosphate load. For this purpose, a laboratory-scale SBR was operated with a synthetic feed containing acetate as the sole carbon source. The experiments were conducted in four different Runs to ensure a range of different phosphate/acetate ratios in the influent. Model evaluations were carried out using concentration profiles measured throughout a representative cycle at steady state. An iterative calibration methodology was developed based on sensitivity analysis and applied to four different sets of experimental data on relevant model parameters reflecting SBR performance. ASM2d was able to predict the steady state behavior of the SBR system receiving variable influent phosphate loads only with the recalibrated parameter set. The regular changing pattern of the coefficients could be interpreted with the ability of the SBR system to sustain glycogen accumulating microorganisms, GAOs, which can store substrate under anaerobic conditions without polyphosphate energy, but deriving energy from the degradation of glycogen. Thus they are capable of prevailing at lower P/Ac ratios. The results indicate the need to include glycogen and GAOs as model components for processes involving both phosphate accumulating organisms, (PAOs) and GAOs, in order to obtain a better prediction of X(PHA) and oxygen uptake rate (OUR) profiles in the system.  相似文献   

17.
The influence of initial glycerol and lactose concentrations on lovastatin and (+)‐geodin formation in batch cultures of Aspergillus terreus ATCC 20542 was presented. At first the experiments comprised lovastatin biosynthesis on glycerol as the sole carbon source. Lovastatin titers below 40 mg/L were found under these conditions and they were lower than previously obtained results when lactose was used as the sole carbon source. However, the application of the mixture of glycerol and lactose allowed in achieving higher lovastatin concentration in the broth. It even exceeded 122 mg/L when 10 g lactose and 15 g glycerol per liter were used. The calculated lovastatin volumetric and specific formation rates on glycerol or lactose and on the mixture of these two showed that lovastatin was faster produced on lactose than on glycerol. In the trophophase, the maximum volumetric lovastatin formation rate on lactose was up to four times higher than on glycerol and so was the lovastatin specific formation rate. Similar relations for the accompanying (+)‐geodin biosynthesis were also studied. When the mixture of lactose and glycerol was used, the transformation of (+)‐geodin to other polyketide metabolites also took place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号